# cd ~/openshift-ansible # git pull https://github.com/openshift/openshift-ansible master
If you installed using the advanced installation and the inventory file that was used is available, you can use the upgrade playbook to automate the OpenShift cluster upgrade process.
The automated upgrade performs the following steps for you:
Applies the latest configuration.
Upgrades master and etcd components and restarts services.
Upgrades node components and restarts services.
Applies the latest cluster policies.
Updates the default router if one exists.
Updates the default registry if one exists.
Updates default image streams and InstantApp templates.
Ensure that you have met all prerequisites before proceeding with an upgrade. Failure to do so can result in a failed upgrade. |
Ensure that you have the latest openshift-ansible code checked out:
# cd ~/openshift-ansible # git pull https://github.com/openshift/openshift-ansible master
Then run one of the following upgrade playbooks utilizing the inventory file you
used during the advanced installation. If your inventory file is located
somewhere other than the default /etc/ansible/hosts, add the -i
flag to
specify the location.
To upgrade from OpenShift Origin 1.0 to 1.1, run the following playbook:
# ansible-playbook \ -i </path/to/inventory/file> \ playbooks/byo/openshift-cluster/upgrades/v3_0_to_v3_1/upgrade.yml
The v3_0_to_v3_1 in the above path is a reference to the related OpenShift Enterprise versions, however it is also the correct playbook to use when upgrading from OpenShift Origin 1.0 to 1.1. |
When the upgrade finishes, a recommendation will be printed to reboot all hosts. After rebooting, continue to Updating Master and Node Certificates.
To upgrade an existing OpenShift Origin 1.1 cluster to the latest 1.1.z release, run the following playbook:
# ansible-playbook \ -i </path/to/inventory/file> \ playbooks/byo/openshift-cluster/upgrades/v3_1_minor/upgrade.yml
The v3_1_minor in the above path is a reference to the related OpenShift Enterprise versions, however it is also the correct playbook to use when upgrading from OpenShift Origin 1.1 to the latest 1.1.z release. |
When the upgrade finishes, a recommendation will be printed to reboot all hosts. After rebooting, continue to Verifying the Upgrade.
The following steps may be required for any OpenShift cluster that was originally installed prior to the OpenShift Origin 1.0.8 release. This may include any and all updates from that version.
With the 1.0.8 release, certificates for each of the kubelet nodes were updated to include the IP address of the node. Any node certificates generated before the 1.0.8 release may not contain the IP address of the node.
If a node is missing the IP address as part of its certificate, clients may
refuse to connect to the kubelet endpoint. Usually this will result in errors
regarding the certificate not containing an IP SAN
.
In order to remedy this situation, you may need to manually update the certificates for your node.
The following command can be used to determine which Subject Alternative Names (SANs) are present in the node’s serving certificate. In this example, the Subject Alternative Names are mynode, mynode.mydomain.com, and 1.2.3.4:
# openssl x509 -in /etc/origin/node/server.crt -text -noout | grep -A 1 "Subject Alternative Name" X509v3 Subject Alternative Name: DNS:mynode, DNS:mynode.mydomain.com, IP: 1.2.3.4
Ensure that the nodeIP
value set in the
/etc/origin/node/node-config.yaml file is present in the IP values from the
Subject Alternative Names listed in the node’s serving certificate. If the
nodeIP
is not present, then it will need to be added to the node’s
certificate.
If the nodeIP
value is already contained within the Subject Alternative
Names, then no further steps are required.
You will need to know the Subject Alternative Names and nodeIP
value for the
following steps.
If your current node certificate does not contain the proper IP address, then you must regenerate a new certificate for your node.
Node certificates will be regenerated on the master (or first master) and are then copied into place on node systems. |
Create a temporary directory in which to perform the following steps:
# mkdir /tmp/node_certificate_update # cd /tmp/node_certificate_update
Export the signing options:
# export signing_opts="--signer-cert=/etc/origin/master/ca.crt \ --signer-key=/etc/origin/master/ca.key \ --signer-serial=/etc/origin/master/ca.serial.txt"
Generate the new certificate:
# oc adm ca create-server-cert --cert=server.crt \ --key=server.key $signing_opts \ --hostnames=<existing_SANs>,<nodeIP>
For example, if the Subject Alternative Names from before were mynode,
mynode.mydomain.com, and 1.2.3.4, and the nodeIP
was 10.10.10.1, then
you would need to run the following command:
# oc adm ca create-server-cert --cert=server.crt \ --key=server.key $signing_opts \ --hostnames=mynode,mynode.mydomain.com,1.2.3.4,10.10.10.1
Back up the existing /etc/origin/node/server.crt and /etc/origin/node/server.key files for your node:
# mv /etc/origin/node/server.crt /etc/origin/node/server.crt.bak # mv /etc/origin/node/server.key /etc/origin/node/server.key.bak
You must now copy the new server.crt and server.key created in the temporary directory during the previous step:
# mv /tmp/node_certificate_update/server.crt /etc/origin/node/server.crt # mv /tmp/node_certificate_update/server.key /etc/origin/node/server.key
After you have replaced the node’s certificate, restart the node service:
# systemctl restart origin-node
With the 1.0.8 release, certificates for each of the masters were updated to include all names that pods may use to communicate with masters. Any master certificates generated before the 1.0.8 release may not contain these additional service names.
The following command can be used to determine which Subject Alternative Names (SANs) are present in the master’s serving certificate. In this example, the Subject Alternative Names are mymaster, mymaster.mydomain.com, and 1.2.3.4:
# openssl x509 -in /etc/origin/master/master.server.crt -text -noout | grep -A 1 "Subject Alternative Name" X509v3 Subject Alternative Name: DNS:mymaster, DNS:mymaster.mydomain.com, IP: 1.2.3.4
Ensure that the following entries are present in the Subject Alternative Names for the master’s serving certificate:
Entry | Example |
---|---|
Kubernetes service IP address |
172.30.0.1 |
All master host names |
master1.example.com |
All master IP addresses |
192.168.122.1 |
Public master host name in clustered environments |
public-master.example.com |
kubernetes |
|
kubernetes.default |
|
kubernetes.default.svc |
|
kubernetes.default.svc.cluster.local |
|
openshift |
|
openshift.default |
|
openshift.default.svc |
|
openshift.default.svc.cluster.local |
If these names are already contained within the Subject Alternative Names, then no further steps are required.
If your current master certificate does not contain all names from the list above, then you must generate a new certificate for your master:
Back up the existing /etc/origin/master/master.server.crt and /etc/origin/master/master.server.key files for your master:
# mv /etc/origin/master/master.server.crt /etc/origin/master/master.server.crt.bak # mv /etc/origin/master/master.server.key /etc/origin/master/master.server.key.bak
Export the service names. These names will be used when generating the new certificate:
# export service_names="kubernetes,kubernetes.default,kubernetes.default.svc,kubernetes.default.svc.cluster.local,openshift,openshift.default,openshift.default.svc,openshift.default.svc.cluster.local"
You will need the first IP in the services
subnet (the kubernetes service IP) as well as the values of masterIP
,
masterURL
and publicMasterURL
contained in the
/etc/origin/master/master-config.yaml file for the following steps.
The kubernetes service IP can be obtained with:
# oc get svc/kubernetes --template='{{.spec.clusterIP}}'
Generate the new certificate:
# oc adm ca create-master-certs \ --hostnames=<master_hostnames>,<master_IP_addresses>,<kubernetes_service_IP>,$service_names \ (1) (2) (3) --master=<internal_master_address> \ (4) --public-master=<public_master_address> \ (5) --cert-dir=/etc/origin/master/ \ --overwrite=false
1 | Adjust <master_hostnames> to match your master host name. In a clustered
environment, add all master host names. |
2 | Adjust <master_IP_addresses> to match the value of masterIP . In a
clustered environment, add all master IP addresses. |
3 | Adjust <kubernetes_service_IP> to the first IP in the kubernetes
services subnet. |
4 | Adjust <internal_master_address> to match the value of masterURL . |
5 | Adjust <public_master_address> to match the value of masterPublicURL . |
Restart master services. For single master deployments:
# systemctl restart origin-master-api origin-master-controllers
After the service restarts, the certificate update is complete.
Starting with OpenShift Origin 3.7, the service catalog, OpenShift Ansible broker, and template service broker are enabled and deployed by default for new cluster installations. However, they are not deployed by default during the upgrade from OpenShift Origin 3.6 to 3.7, so you must run an individual component playbook separate post-upgrade.
Upgrading from the OpenShift Origin 3.6 Technology Preview version of the service catalog and service brokers is not supported. |
To upgrade to these features:
See the following three sections in the Advanced Installation topic and update your inventory file accordingly:
Run the following playbook:
# ansible-playbook -i </path/to/inventory/file> \ /usr/share/ansible/openshift-ansible/playbooks/openshift-service-catalog/config.yml
To upgrade an existing EFK logging stack deployment, you must use the provided /usr/share/ansible/openshift-ansible/playbooks/openshift-logging/config.yml Ansible playbook. This is the playbook to use if you were deploying logging for the first time on an existing cluster, but is also used to upgrade existing logging deployments.
If you have not already done so, see
Specifying Logging Ansible Variables in the
Aggregating Container Logs topic and update your Ansible inventory file to at least set the
following required variable within the [OSEv3:vars]
section:
[OSEv3:vars] openshift_logging_install_logging=true (1) openshift_logging_image_version=<tag> (2)
1 | Enables the ability to upgrade the logging stack. |
2 | Replace <tag> with v3.7.9 for the latest version. |
Add any other openshift_logging_*
variables that you want to specify to
override the defaults, as described in
Specifying Logging Ansible Variables.
When you have finished updating your inventory file, follow the instructions in Deploying the EFK Stack to run the openshift-logging.yml playbook and complete the logging deployment upgrade.
To upgrade an existing cluster metrics deployment, you must use the provided /usr/share/ansible/openshift-ansible/playbooks/openshift-metrics/config.yml Ansible playbook. This is the playbook to use if you were deploying metrics for the first time on an existing cluster, but is also used to upgrade existing metrics deployments.
If you have not already done so, see
Specifying Metrics Ansible Variables in the
Enabling Cluster Metrics topic and update your Ansible inventory file to at least set the
following required variables within the [OSEv3:vars]
section:
[OSEv3:vars] openshift_metrics_install_metrics=true (1) openshift_metrics_image_version=<tag> (2) openshift_metrics_hawkular_hostname=<fqdn> (3) openshift_metrics_cassandra_storage_type=(emptydir|pv|dynamic) (4)
1 | Enables the ability to upgrade the metrics deployment. |
2 | Replace <tag> with v3.7.9 for the latest version. |
3 | Used for the Hawkular Metrics route. Should correspond to a fully qualified domain name. |
4 | Choose a type that is consistent with the previous deployment. |
Add any other openshift_metrics_*
variables that you want to specify to
override the defaults, as described in
Specifying
Metrics Ansible Variables.
When you have finished updating your inventory file, follow the instructions in Deploying the Metrics Deployment to run the openshift_metrics.yml playbook and complete the metrics deployment upgrade.
To verify the upgrade:
Check that all nodes are marked as Ready:
# oc get nodes NAME STATUS AGE master.example.com Ready,SchedulingDisabled 165d node1.example.com Ready 165d node2.example.com Ready 165d
Verify that you are running the expected versions of the docker-registry and router images, if deployed.
# oc get -n default dc/docker-registry -o json | grep \"image\" "image": "openshift/origin-docker-registry:v1.0.6", # oc get -n default dc/router -o json | grep \"image\" "image": "openshift/origin-haproxy-router:v1.0.6",
If you upgraded from Origin 1.0 to Origin 1.1, verify in your old /etc/sysconfig/openshift-master and /etc/sysconfig/openshift-node files that any custom configuration is added to your new /etc/sysconfig/origin-master and /etc/sysconfig/origin-node files.
Use the diagnostics tool on the master to look for common issues:
# oc adm diagnostics ... [Note] Summary of diagnostics execution: [Note] Completed with no errors or warnings seen.