| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnm00 | Unicode version | ||
| Description: The product of two natural numbers is zero iff at least one of them is zero. (Contributed by Jim Kingdon, 11-Nov-2004.) |
| Ref | Expression |
|---|---|
| nnm00 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 107 |
. . . . . . 7
| |
| 2 | simpl 107 |
. . . . . . 7
| |
| 3 | 1, 2 | jaoi 668 |
. . . . . 6
|
| 4 | 3 | orcd 684 |
. . . . 5
|
| 5 | 4 | a1i 9 |
. . . 4
|
| 6 | simpr 108 |
. . . . . . 7
| |
| 7 | 6 | olcd 685 |
. . . . . 6
|
| 8 | 7 | a1i 9 |
. . . . 5
|
| 9 | simplr 496 |
. . . . . . 7
| |
| 10 | nnmordi 6112 |
. . . . . . . . . . . . 13
| |
| 11 | 10 | expimpd 355 |
. . . . . . . . . . . 12
|
| 12 | 11 | ancoms 264 |
. . . . . . . . . . 11
|
| 13 | nnm0 6077 |
. . . . . . . . . . . . 13
| |
| 14 | 13 | adantr 270 |
. . . . . . . . . . . 12
|
| 15 | 14 | eleq1d 2147 |
. . . . . . . . . . 11
|
| 16 | 12, 15 | sylibd 147 |
. . . . . . . . . 10
|
| 17 | 16 | adantr 270 |
. . . . . . . . 9
|
| 18 | 17 | imp 122 |
. . . . . . . 8
|
| 19 | n0i 3256 |
. . . . . . . 8
| |
| 20 | 18, 19 | syl 14 |
. . . . . . 7
|
| 21 | 9, 20 | pm2.21dd 582 |
. . . . . 6
|
| 22 | 21 | ex 113 |
. . . . 5
|
| 23 | 8, 22 | jaod 669 |
. . . 4
|
| 24 | 0elnn 4358 |
. . . . . . 7
| |
| 25 | 0elnn 4358 |
. . . . . . 7
| |
| 26 | 24, 25 | anim12i 331 |
. . . . . 6
|
| 27 | anddi 767 |
. . . . . 6
| |
| 28 | 26, 27 | sylib 120 |
. . . . 5
|
| 29 | 28 | adantr 270 |
. . . 4
|
| 30 | 5, 23, 29 | mpjaod 670 |
. . 3
|
| 31 | 30 | ex 113 |
. 2
|
| 32 | oveq1 5539 |
. . . . . 6
| |
| 33 | nnm0r 6081 |
. . . . . 6
| |
| 34 | 32, 33 | sylan9eqr 2135 |
. . . . 5
|
| 35 | 34 | ex 113 |
. . . 4
|
| 36 | 35 | adantl 271 |
. . 3
|
| 37 | oveq2 5540 |
. . . . . 6
| |
| 38 | 37, 13 | sylan9eqr 2135 |
. . . . 5
|
| 39 | 38 | ex 113 |
. . . 4
|
| 40 | 39 | adantr 270 |
. . 3
|
| 41 | 36, 40 | jaod 669 |
. 2
|
| 42 | 31, 41 | impbid 127 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-irdg 5980 df-oadd 6028 df-omul 6029 |
| This theorem is referenced by: enq0tr 6624 nqnq0pi 6628 |
| Copyright terms: Public domain | W3C validator |