| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > acexmidlem2 | Unicode version | ||
| Description: Lemma for acexmid 5531. This builds on acexmidlem1 5528 by noting that every
element of
(Note that
The set (Contributed by Jim Kingdon, 5-Aug-2019.) |
| Ref | Expression |
|---|---|
| acexmidlem.a |
|
| acexmidlem.b |
|
| acexmidlem.c |
|
| Ref | Expression |
|---|---|
| acexmidlem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2353 |
. . . . 5
| |
| 2 | 19.23v 1804 |
. . . . 5
| |
| 3 | 1, 2 | bitr2i 183 |
. . . 4
|
| 4 | acexmidlem.c |
. . . . . . . . 9
| |
| 5 | 4 | eleq2i 2145 |
. . . . . . . 8
|
| 6 | vex 2604 |
. . . . . . . . 9
| |
| 7 | 6 | elpr 3419 |
. . . . . . . 8
|
| 8 | 5, 7 | bitri 182 |
. . . . . . 7
|
| 9 | onsucelsucexmidlem1 4271 |
. . . . . . . . . . 11
| |
| 10 | acexmidlem.a |
. . . . . . . . . . 11
| |
| 11 | 9, 10 | eleqtrri 2154 |
. . . . . . . . . 10
|
| 12 | elex2 2615 |
. . . . . . . . . 10
| |
| 13 | 11, 12 | ax-mp 7 |
. . . . . . . . 9
|
| 14 | eleq2 2142 |
. . . . . . . . . 10
| |
| 15 | 14 | exbidv 1746 |
. . . . . . . . 9
|
| 16 | 13, 15 | mpbiri 166 |
. . . . . . . 8
|
| 17 | p0ex 3959 |
. . . . . . . . . . . . 13
| |
| 18 | 17 | prid2 3499 |
. . . . . . . . . . . 12
|
| 19 | eqid 2081 |
. . . . . . . . . . . . 13
| |
| 20 | 19 | orci 682 |
. . . . . . . . . . . 12
|
| 21 | eqeq1 2087 |
. . . . . . . . . . . . . 14
| |
| 22 | 21 | orbi1d 737 |
. . . . . . . . . . . . 13
|
| 23 | 22 | elrab 2749 |
. . . . . . . . . . . 12
|
| 24 | 18, 20, 23 | mpbir2an 883 |
. . . . . . . . . . 11
|
| 25 | acexmidlem.b |
. . . . . . . . . . 11
| |
| 26 | 24, 25 | eleqtrri 2154 |
. . . . . . . . . 10
|
| 27 | elex2 2615 |
. . . . . . . . . 10
| |
| 28 | 26, 27 | ax-mp 7 |
. . . . . . . . 9
|
| 29 | eleq2 2142 |
. . . . . . . . . 10
| |
| 30 | 29 | exbidv 1746 |
. . . . . . . . 9
|
| 31 | 28, 30 | mpbiri 166 |
. . . . . . . 8
|
| 32 | 16, 31 | jaoi 668 |
. . . . . . 7
|
| 33 | 8, 32 | sylbi 119 |
. . . . . 6
|
| 34 | pm2.27 39 |
. . . . . 6
| |
| 35 | 33, 34 | syl 14 |
. . . . 5
|
| 36 | 35 | imp 122 |
. . . 4
|
| 37 | 3, 36 | sylan2br 282 |
. . 3
|
| 38 | 37 | ralimiaa 2425 |
. 2
|
| 39 | 10, 25, 4 | acexmidlem1 5528 |
. 2
|
| 40 | 38, 39 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-nul 3904 ax-pow 3948 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-uni 3602 df-tr 3876 df-iord 4121 df-on 4123 df-suc 4126 df-iota 4887 df-riota 5488 |
| This theorem is referenced by: acexmidlemv 5530 |
| Copyright terms: Public domain | W3C validator |