| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgprlem1 | Unicode version | ||
| Description: Lemma for caucvgpr 6872. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 3-Oct-2020.) |
| Ref | Expression |
|---|---|
| caucvgpr.f |
|
| caucvgpr.cau |
|
| caucvgpr.bnd |
|
| caucvgpr.lim |
|
| caucvgprlemlim.q |
|
| caucvgprlemlim.jk |
|
| caucvgprlemlim.jkq |
|
| Ref | Expression |
|---|---|
| caucvgprlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgprlemlim.jk |
. . . . . 6
| |
| 2 | ltrelpi 6514 |
. . . . . . 7
| |
| 3 | 2 | brel 4410 |
. . . . . 6
|
| 4 | 1, 3 | syl 14 |
. . . . 5
|
| 5 | 4 | simprd 112 |
. . . 4
|
| 6 | caucvgprlemlim.jkq |
. . . . . 6
| |
| 7 | 1, 6 | caucvgprlemk 6855 |
. . . . 5
|
| 8 | caucvgpr.f |
. . . . . 6
| |
| 9 | 8, 5 | ffvelrnd 5324 |
. . . . 5
|
| 10 | ltanqi 6592 |
. . . . 5
| |
| 11 | 7, 9, 10 | syl2anc 403 |
. . . 4
|
| 12 | opeq1 3570 |
. . . . . . . . 9
| |
| 13 | 12 | eceq1d 6165 |
. . . . . . . 8
|
| 14 | 13 | fveq2d 5202 |
. . . . . . 7
|
| 15 | 14 | oveq2d 5548 |
. . . . . 6
|
| 16 | fveq2 5198 |
. . . . . . 7
| |
| 17 | 16 | oveq1d 5547 |
. . . . . 6
|
| 18 | 15, 17 | breq12d 3798 |
. . . . 5
|
| 19 | 18 | rspcev 2701 |
. . . 4
|
| 20 | 5, 11, 19 | syl2anc 403 |
. . 3
|
| 21 | oveq1 5539 |
. . . . . . . 8
| |
| 22 | 21 | breq1d 3795 |
. . . . . . 7
|
| 23 | 22 | rexbidv 2369 |
. . . . . 6
|
| 24 | 23 | elrab3 2750 |
. . . . 5
|
| 25 | 9, 24 | syl 14 |
. . . 4
|
| 26 | caucvgpr.cau |
. . . . . 6
| |
| 27 | caucvgpr.bnd |
. . . . . 6
| |
| 28 | caucvgpr.lim |
. . . . . 6
| |
| 29 | caucvgprlemlim.q |
. . . . . 6
| |
| 30 | 8, 26, 27, 28, 29 | caucvgprlemladdrl 6868 |
. . . . 5
|
| 31 | 30 | sseld 2998 |
. . . 4
|
| 32 | 25, 31 | sylbird 168 |
. . 3
|
| 33 | 20, 32 | mpd 13 |
. 2
|
| 34 | 8, 26, 27, 28 | caucvgprlemcl 6866 |
. . . 4
|
| 35 | nqprlu 6737 |
. . . . 5
| |
| 36 | 29, 35 | syl 14 |
. . . 4
|
| 37 | addclpr 6727 |
. . . 4
| |
| 38 | 34, 36, 37 | syl2anc 403 |
. . 3
|
| 39 | nqprl 6741 |
. . 3
| |
| 40 | 9, 38, 39 | syl2anc 403 |
. 2
|
| 41 | 33, 40 | mpbid 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-eprel 4044 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-irdg 5980 df-1o 6024 df-2o 6025 df-oadd 6028 df-omul 6029 df-er 6129 df-ec 6131 df-qs 6135 df-ni 6494 df-pli 6495 df-mi 6496 df-lti 6497 df-plpq 6534 df-mpq 6535 df-enq 6537 df-nqqs 6538 df-plqqs 6539 df-mqqs 6540 df-1nqqs 6541 df-rq 6542 df-ltnqqs 6543 df-enq0 6614 df-nq0 6615 df-0nq0 6616 df-plq0 6617 df-mq0 6618 df-inp 6656 df-iplp 6658 df-iltp 6660 |
| This theorem is referenced by: caucvgprlemlim 6871 |
| Copyright terms: Public domain | W3C validator |