ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlem1 GIF version

Theorem caucvgprlem1 6869
Description: Lemma for caucvgpr 6872. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 3-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f (𝜑𝐹:NQ)
caucvgpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))
caucvgpr.bnd (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
caucvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩
caucvgprlemlim.q (𝜑𝑄Q)
caucvgprlemlim.jk (𝜑𝐽 <N 𝐾)
caucvgprlemlim.jkq (𝜑 → (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑄)
Assertion
Ref Expression
caucvgprlem1 (𝜑 → ⟨{𝑙𝑙 <Q (𝐹𝐾)}, {𝑢 ∣ (𝐹𝐾) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹,𝑙,𝑢   𝑗,𝐾,𝑙,𝑢   𝑄,𝑗,𝑙,𝑢   𝑄,𝑘   𝑗,𝐿,𝑘   𝑢,𝑗   𝑘,𝐹,𝑛   𝑗,𝑘
Allowed substitution hints:   𝜑(𝑢,𝑗,𝑘,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑙)   𝑄(𝑛)   𝐽(𝑢,𝑗,𝑘,𝑛,𝑙)   𝐾(𝑘,𝑛)   𝐿(𝑢,𝑛,𝑙)

Proof of Theorem caucvgprlem1
StepHypRef Expression
1 caucvgprlemlim.jk . . . . . 6 (𝜑𝐽 <N 𝐾)
2 ltrelpi 6514 . . . . . . 7 <N ⊆ (N × N)
32brel 4410 . . . . . 6 (𝐽 <N 𝐾 → (𝐽N𝐾N))
41, 3syl 14 . . . . 5 (𝜑 → (𝐽N𝐾N))
54simprd 112 . . . 4 (𝜑𝐾N)
6 caucvgprlemlim.jkq . . . . . 6 (𝜑 → (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑄)
71, 6caucvgprlemk 6855 . . . . 5 (𝜑 → (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑄)
8 caucvgpr.f . . . . . 6 (𝜑𝐹:NQ)
98, 5ffvelrnd 5324 . . . . 5 (𝜑 → (𝐹𝐾) ∈ Q)
10 ltanqi 6592 . . . . 5 (((*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑄 ∧ (𝐹𝐾) ∈ Q) → ((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )) <Q ((𝐹𝐾) +Q 𝑄))
117, 9, 10syl2anc 403 . . . 4 (𝜑 → ((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )) <Q ((𝐹𝐾) +Q 𝑄))
12 opeq1 3570 . . . . . . . . 9 (𝑗 = 𝐾 → ⟨𝑗, 1𝑜⟩ = ⟨𝐾, 1𝑜⟩)
1312eceq1d 6165 . . . . . . . 8 (𝑗 = 𝐾 → [⟨𝑗, 1𝑜⟩] ~Q = [⟨𝐾, 1𝑜⟩] ~Q )
1413fveq2d 5202 . . . . . . 7 (𝑗 = 𝐾 → (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) = (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ))
1514oveq2d 5548 . . . . . 6 (𝑗 = 𝐾 → ((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) = ((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )))
16 fveq2 5198 . . . . . . 7 (𝑗 = 𝐾 → (𝐹𝑗) = (𝐹𝐾))
1716oveq1d 5547 . . . . . 6 (𝑗 = 𝐾 → ((𝐹𝑗) +Q 𝑄) = ((𝐹𝐾) +Q 𝑄))
1815, 17breq12d 3798 . . . . 5 (𝑗 = 𝐾 → (((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄) ↔ ((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )) <Q ((𝐹𝐾) +Q 𝑄)))
1918rspcev 2701 . . . 4 ((𝐾N ∧ ((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )) <Q ((𝐹𝐾) +Q 𝑄)) → ∃𝑗N ((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄))
205, 11, 19syl2anc 403 . . 3 (𝜑 → ∃𝑗N ((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄))
21 oveq1 5539 . . . . . . . 8 (𝑙 = (𝐹𝐾) → (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) = ((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )))
2221breq1d 3795 . . . . . . 7 (𝑙 = (𝐹𝐾) → ((𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄) ↔ ((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄)))
2322rexbidv 2369 . . . . . 6 (𝑙 = (𝐹𝐾) → (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄) ↔ ∃𝑗N ((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄)))
2423elrab3 2750 . . . . 5 ((𝐹𝐾) ∈ Q → ((𝐹𝐾) ∈ {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄)} ↔ ∃𝑗N ((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄)))
259, 24syl 14 . . . 4 (𝜑 → ((𝐹𝐾) ∈ {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄)} ↔ ∃𝑗N ((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄)))
26 caucvgpr.cau . . . . . 6 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))
27 caucvgpr.bnd . . . . . 6 (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
28 caucvgpr.lim . . . . . 6 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩
29 caucvgprlemlim.q . . . . . 6 (𝜑𝑄Q)
308, 26, 27, 28, 29caucvgprlemladdrl 6868 . . . . 5 (𝜑 → {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄)} ⊆ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))
3130sseld 2998 . . . 4 (𝜑 → ((𝐹𝐾) ∈ {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄)} → (𝐹𝐾) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))))
3225, 31sylbird 168 . . 3 (𝜑 → (∃𝑗N ((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄) → (𝐹𝐾) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))))
3320, 32mpd 13 . 2 (𝜑 → (𝐹𝐾) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))
348, 26, 27, 28caucvgprlemcl 6866 . . . 4 (𝜑𝐿P)
35 nqprlu 6737 . . . . 5 (𝑄Q → ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩ ∈ P)
3629, 35syl 14 . . . 4 (𝜑 → ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩ ∈ P)
37 addclpr 6727 . . . 4 ((𝐿P ∧ ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩ ∈ P) → (𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩) ∈ P)
3834, 36, 37syl2anc 403 . . 3 (𝜑 → (𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩) ∈ P)
39 nqprl 6741 . . 3 (((𝐹𝐾) ∈ Q ∧ (𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩) ∈ P) → ((𝐹𝐾) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)) ↔ ⟨{𝑙𝑙 <Q (𝐹𝐾)}, {𝑢 ∣ (𝐹𝐾) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))
409, 38, 39syl2anc 403 . 2 (𝜑 → ((𝐹𝐾) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)) ↔ ⟨{𝑙𝑙 <Q (𝐹𝐾)}, {𝑢 ∣ (𝐹𝐾) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))
4133, 40mpbid 145 1 (𝜑 → ⟨{𝑙𝑙 <Q (𝐹𝐾)}, {𝑢 ∣ (𝐹𝐾) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  {cab 2067  wral 2348  wrex 2349  {crab 2352  cop 3401   class class class wbr 3785  wf 4918  cfv 4922  (class class class)co 5532  1st c1st 5785  1𝑜c1o 6017  [cec 6127  Ncnpi 6462   <N clti 6465   ~Q ceq 6469  Qcnq 6470   +Q cplq 6472  *Qcrq 6474   <Q cltq 6475  Pcnp 6481   +P cpp 6483  <P cltp 6485
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-iplp 6658  df-iltp 6660
This theorem is referenced by:  caucvgprlemlim  6871
  Copyright terms: Public domain W3C validator