ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemladdrl Unicode version

Theorem caucvgprlemladdrl 6868
Description: Lemma for caucvgpr 6872. Adding  S after embedding in positive reals, or adding it as a rational. (Contributed by Jim Kingdon, 8-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f  |-  ( ph  ->  F : N. --> Q. )
caucvgpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
caucvgpr.bnd  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
caucvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
caucvgprlemladd.s  |-  ( ph  ->  S  e.  Q. )
Assertion
Ref Expression
caucvgprlemladdrl  |-  ( ph  ->  { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  S ) }  C_  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )
Distinct variable groups:    A, j    j, F, u, l    n, F, k    k, L, j    S, l, u, j    j,
k, S
Allowed substitution hints:    ph( u, j, k, n, l)    A( u, k, n, l)    S( n)    L( u, n, l)

Proof of Theorem caucvgprlemladdrl
Dummy variables  r  f  g  h  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3570 . . . . . . . . 9  |-  ( j  =  a  ->  <. j ,  1o >.  =  <. a ,  1o >. )
21eceq1d 6165 . . . . . . . 8  |-  ( j  =  a  ->  [ <. j ,  1o >. ]  ~Q  =  [ <. a ,  1o >. ]  ~Q  )
32fveq2d 5202 . . . . . . 7  |-  ( j  =  a  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )
43oveq2d 5548 . . . . . 6  |-  ( j  =  a  ->  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )
5 fveq2 5198 . . . . . . 7  |-  ( j  =  a  ->  ( F `  j )  =  ( F `  a ) )
65oveq1d 5547 . . . . . 6  |-  ( j  =  a  ->  (
( F `  j
)  +Q  S )  =  ( ( F `
 a )  +Q  S ) )
74, 6breq12d 3798 . . . . 5  |-  ( j  =  a  ->  (
( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  S )  <->  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) ) )
87cbvrexv 2578 . . . 4  |-  ( E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  S )  <->  E. a  e.  N.  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )
98a1i 9 . . 3  |-  ( l  e.  Q.  ->  ( E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  S )  <->  E. a  e.  N.  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) ) )
109rabbiia 2591 . 2  |-  { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  S ) }  =  { l  e.  Q.  |  E. a  e.  N.  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 a )  +Q  S ) }
11 oveq1 5539 . . . . . . 7  |-  ( l  =  r  ->  (
l  +Q  ( *Q
`  [ <. a ,  1o >. ]  ~Q  )
)  =  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )
1211breq1d 3795 . . . . . 6  |-  ( l  =  r  ->  (
( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 a )  +Q  S )  <->  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) ) )
1312rexbidv 2369 . . . . 5  |-  ( l  =  r  ->  ( E. a  e.  N.  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 a )  +Q  S )  <->  E. a  e.  N.  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) ) )
1413elrab 2749 . . . 4  |-  ( r  e.  { l  e. 
Q.  |  E. a  e.  N.  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) }  <->  ( r  e.  Q.  /\  E. a  e.  N.  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) ) )
15 caucvgpr.f . . . . . . . . . . . . . . 15  |-  ( ph  ->  F : N. --> Q. )
1615ad4antr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  F : N. --> Q. )
17 caucvgpr.cau . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
1817ad4antr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  A. n  e.  N.  A. k  e. 
N.  ( n  <N  k  ->  ( ( F `
 n )  <Q 
( ( F `  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
19 simpr 108 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  b  e.  N. )
20 simpllr 500 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  a  e.  N. )
2116, 18, 19, 20caucvgprlemnbj 6857 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  -.  ( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( F `  a
) )
2215ad3antrrr 475 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  F : N. --> Q. )
2322ffvelrnda 5323 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  ( F `  b )  e.  Q. )
24 nnnq 6612 . . . . . . . . . . . . . . . . . 18  |-  ( b  e.  N.  ->  [ <. b ,  1o >. ]  ~Q  e.  Q. )
25 recclnq 6582 . . . . . . . . . . . . . . . . . 18  |-  ( [
<. b ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  e.  Q. )
2619, 24, 253syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  e.  Q. )
27 addclnq 6565 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F `  b
)  e.  Q.  /\  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  e.  Q. )  ->  ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  e.  Q. )
2823, 26, 27syl2anc 403 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  (
( F `  b
)  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
)  e.  Q. )
29 nnnq 6612 . . . . . . . . . . . . . . . . 17  |-  ( a  e.  N.  ->  [ <. a ,  1o >. ]  ~Q  e.  Q. )
30 recclnq 6582 . . . . . . . . . . . . . . . . 17  |-  ( [
<. a ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  e.  Q. )
3120, 29, 303syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  e.  Q. )
32 caucvgprlemladd.s . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  S  e.  Q. )
3332ad4antr 477 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  S  e.  Q. )
34 addassnqg 6572 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  e.  Q.  /\  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  e.  Q.  /\  S  e.  Q. )  ->  (
( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  +Q  S )  =  ( ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  +Q  ( ( *Q `  [ <. a ,  1o >. ]  ~Q  )  +Q  S ) ) )
3528, 31, 33, 34syl3anc 1169 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  (
( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  +Q  S )  =  ( ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  +Q  ( ( *Q `  [ <. a ,  1o >. ]  ~Q  )  +Q  S ) ) )
3635breq1d 3795 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  (
( ( ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  +Q  S )  <Q 
( ( F `  a )  +Q  S
)  <->  ( ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( ( *Q
`  [ <. a ,  1o >. ]  ~Q  )  +Q  S ) )  <Q 
( ( F `  a )  +Q  S
) ) )
37 ltanqg 6590 . . . . . . . . . . . . . . . 16  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
3837adantl 271 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  (
r  +Q  ( *Q
`  [ <. a ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 a )  +Q  S ) )  /\  b  e.  N. )  /\  ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )
)  ->  ( f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
39 addclnq 6565 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  e.  Q.  /\  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  e.  Q. )  ->  ( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  e. 
Q. )
4028, 31, 39syl2anc 403 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  (
( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. a ,  1o >. ]  ~Q  )
)  e.  Q. )
4116, 20ffvelrnd 5324 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  ( F `  a )  e.  Q. )
42 addcomnqg 6571 . . . . . . . . . . . . . . . 16  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
4342adantl 271 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  (
r  +Q  ( *Q
`  [ <. a ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 a )  +Q  S ) )  /\  b  e.  N. )  /\  ( f  e.  Q.  /\  g  e.  Q. )
)  ->  ( f  +Q  g )  =  ( g  +Q  f ) )
4438, 40, 41, 33, 43caovord2d 5690 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  (
( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( F `  a
)  <->  ( ( ( ( F `  b
)  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. a ,  1o >. ]  ~Q  )
)  +Q  S ) 
<Q  ( ( F `  a )  +Q  S
) ) )
45 addcomnqg 6571 . . . . . . . . . . . . . . . . 17  |-  ( ( S  e.  Q.  /\  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  e.  Q. )  ->  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  =  ( ( *Q `  [ <. a ,  1o >. ]  ~Q  )  +Q  S ) )
4633, 31, 45syl2anc 403 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  =  ( ( *Q
`  [ <. a ,  1o >. ]  ~Q  )  +Q  S ) )
4746oveq2d 5548 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  (
( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )  =  ( ( ( F `  b
)  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
)  +Q  ( ( *Q `  [ <. a ,  1o >. ]  ~Q  )  +Q  S ) ) )
4847breq1d 3795 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  (
( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) )  <Q  (
( F `  a
)  +Q  S )  <-> 
( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( ( *Q `  [ <. a ,  1o >. ]  ~Q  )  +Q  S ) )  <Q 
( ( F `  a )  +Q  S
) ) )
4936, 44, 483bitr4rd 219 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  (
( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) )  <Q  (
( F `  a
)  +Q  S )  <-> 
( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( F `  a
) ) )
5021, 49mtbird 630 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  -.  ( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) )  <Q  (
( F `  a
)  +Q  S ) )
5150nrexdv 2454 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  -.  E. b  e.  N.  (
( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )  <Q  ( ( F `  a )  +Q  S ) )
5251intnand 873 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  -.  ( ( ( F `
 a )  +Q  S )  e.  Q.  /\ 
E. b  e.  N.  ( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) )  <Q  (
( F `  a
)  +Q  S ) ) )
5317ad3antrrr 475 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  A. n  e.  N.  A. k  e. 
N.  ( n  <N  k  ->  ( ( F `
 n )  <Q 
( ( F `  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
54 caucvgpr.bnd . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
55 fveq2 5198 . . . . . . . . . . . . . . . . 17  |-  ( j  =  b  ->  ( F `  j )  =  ( F `  b ) )
5655breq2d 3797 . . . . . . . . . . . . . . . 16  |-  ( j  =  b  ->  ( A  <Q  ( F `  j )  <->  A  <Q  ( F `  b ) ) )
5756cbvralv 2577 . . . . . . . . . . . . . . 15  |-  ( A. j  e.  N.  A  <Q  ( F `  j
)  <->  A. b  e.  N.  A  <Q  ( F `  b ) )
5854, 57sylib 120 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. b  e.  N.  A  <Q  ( F `  b ) )
5958ad3antrrr 475 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  A. b  e.  N.  A  <Q  ( F `  b )
)
60 caucvgpr.lim . . . . . . . . . . . . . 14  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
61 opeq1 3570 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( j  =  b  ->  <. j ,  1o >.  =  <. b ,  1o >. )
6261eceq1d 6165 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  =  b  ->  [ <. j ,  1o >. ]  ~Q  =  [ <. b ,  1o >. ]  ~Q  )
6362fveq2d 5202 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  =  b  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )
6463oveq2d 5548 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =  b  ->  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( l  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) )
6564, 55breq12d 3798 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  b  ->  (
( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  ( l  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
( F `  b
) ) )
6665cbvrexv 2578 . . . . . . . . . . . . . . . . 17  |-  ( E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  E. b  e.  N.  ( l  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
( F `  b
) )
6766a1i 9 . . . . . . . . . . . . . . . 16  |-  ( l  e.  Q.  ->  ( E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  E. b  e.  N.  ( l  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
( F `  b
) ) )
6867rabbiia 2591 . . . . . . . . . . . . . . 15  |-  { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }  =  { l  e.  Q.  |  E. b  e.  N.  ( l  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  ( F `  b ) }
6955, 63oveq12d 5550 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =  b  ->  (
( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) )
7069breq1d 3795 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  b  ->  (
( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q  u ) )
7170cbvrexv 2578 . . . . . . . . . . . . . . . . 17  |-  ( E. j  e.  N.  (
( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  E. b  e.  N.  ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q  u )
7271a1i 9 . . . . . . . . . . . . . . . 16  |-  ( u  e.  Q.  ->  ( E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  E. b  e.  N.  ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q  u ) )
7372rabbiia 2591 . . . . . . . . . . . . . . 15  |-  { u  e.  Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }  =  {
u  e.  Q.  |  E. b  e.  N.  ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  u }
7468, 73opeq12i 3575 . . . . . . . . . . . . . 14  |-  <. { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.  = 
<. { l  e.  Q.  |  E. b  e.  N.  ( l  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  ( F `  b ) } ,  { u  e.  Q.  |  E. b  e.  N.  ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  u } >.
7560, 74eqtri 2101 . . . . . . . . . . . . 13  |-  L  = 
<. { l  e.  Q.  |  E. b  e.  N.  ( l  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  ( F `  b ) } ,  { u  e.  Q.  |  E. b  e.  N.  ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  u } >.
7632ad3antrrr 475 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  S  e.  Q. )
7729, 30syl 14 . . . . . . . . . . . . . . 15  |-  ( a  e.  N.  ->  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  e.  Q. )
7877ad2antlr 472 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  e.  Q. )
79 addclnq 6565 . . . . . . . . . . . . . 14  |-  ( ( S  e.  Q.  /\  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  e.  Q. )  ->  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  e.  Q. )
8076, 78, 79syl2anc 403 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  e.  Q. )
8122, 53, 59, 75, 80caucvgprlemladdfu 6867 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  ( 2nd `  ( L  +P.  <. { l  |  l 
<Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >. )
)  C_  { u  e.  Q.  |  E. b  e.  N.  ( ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )  <Q  u } )
8281sseld 2998 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  (
( ( F `  a )  +Q  S
)  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q 
( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >. )
)  ->  ( ( F `  a )  +Q  S )  e.  {
u  e.  Q.  |  E. b  e.  N.  ( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) )  <Q  u } ) )
83 breq2 3789 . . . . . . . . . . . . 13  |-  ( u  =  ( ( F `
 a )  +Q  S )  ->  (
( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) )  <Q  u  <->  ( ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )  <Q  ( ( F `  a )  +Q  S ) ) )
8483rexbidv 2369 . . . . . . . . . . . 12  |-  ( u  =  ( ( F `
 a )  +Q  S )  ->  ( E. b  e.  N.  ( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) )  <Q  u  <->  E. b  e.  N.  (
( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )  <Q  ( ( F `  a )  +Q  S ) ) )
8584elrab 2749 . . . . . . . . . . 11  |-  ( ( ( F `  a
)  +Q  S )  e.  { u  e. 
Q.  |  E. b  e.  N.  ( ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )  <Q  u }  <->  ( ( ( F `  a )  +Q  S )  e. 
Q.  /\  E. b  e.  N.  ( ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )  <Q 
( ( F `  a )  +Q  S
) ) )
8682, 85syl6ib 159 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  (
( ( F `  a )  +Q  S
)  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q 
( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >. )
)  ->  ( (
( F `  a
)  +Q  S )  e.  Q.  /\  E. b  e.  N.  (
( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )  <Q  ( ( F `  a )  +Q  S ) ) ) )
8752, 86mtod 621 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  -.  ( ( F `  a )  +Q  S
)  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q 
( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >. )
) )
8815, 17, 54, 60caucvgprlemcl 6866 . . . . . . . . . . . 12  |-  ( ph  ->  L  e.  P. )
8988ad3antrrr 475 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  L  e.  P. )
90 nqprlu 6737 . . . . . . . . . . . 12  |-  ( ( S  +Q  ( *Q
`  [ <. a ,  1o >. ]  ~Q  )
)  e.  Q.  ->  <. { l  |  l 
<Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >.  e.  P. )
9180, 90syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q  u } >.  e.  P. )
92 addclpr 6727 . . . . . . . . . . 11  |-  ( ( L  e.  P.  /\  <. { l  |  l 
<Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >.  e.  P. )  ->  ( L  +P.  <. { l  |  l 
<Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >. )  e.  P. )
9389, 91, 92syl2anc 403 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  u } >. )  e.  P. )
94 prop 6665 . . . . . . . . . . 11  |-  ( ( L  +P.  <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q  u } >. )  e.  P.  -> 
<. ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  u } >. ) ) ,  ( 2nd `  ( L  +P.  <. { l  |  l  <Q 
( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >. )
) >.  e.  P. )
95 prloc 6681 . . . . . . . . . . 11  |-  ( (
<. ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  u } >. ) ) ,  ( 2nd `  ( L  +P.  <. { l  |  l  <Q 
( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >. )
) >.  e.  P.  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 a )  +Q  S ) )  -> 
( ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  u } >. ) )  \/  ( ( F `  a )  +Q  S )  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  u } >. ) ) ) )
9694, 95sylan 277 . . . . . . . . . 10  |-  ( ( ( L  +P.  <. { l  |  l  <Q 
( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >. )  e.  P.  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  ( ( F `  a )  +Q  S
) )  ->  (
( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q 
( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >. )
)  \/  ( ( F `  a )  +Q  S )  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  u } >. ) ) ) )
9793, 96sylancom 411 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  (
( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q 
( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >. )
)  \/  ( ( F `  a )  +Q  S )  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  u } >. ) ) ) )
9887, 97ecased 1280 . . . . . . . 8  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  (
r  +Q  ( *Q
`  [ <. a ,  1o >. ]  ~Q  )
)  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q 
( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >. )
) )
99 simpllr 500 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  r  e.  Q. )
10089, 76, 99, 78caucvgprlemcanl 6834 . . . . . . . 8  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  (
( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q 
( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >. )
)  <->  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) ) )
10198, 100mpbid 145 . . . . . . 7  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )
102101ex 113 . . . . . 6  |-  ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  ->  (
( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 a )  +Q  S )  ->  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) ) )
103102rexlimdva 2477 . . . . 5  |-  ( (
ph  /\  r  e.  Q. )  ->  ( E. a  e.  N.  (
r  +Q  ( *Q
`  [ <. a ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 a )  +Q  S )  ->  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) ) )
104103expimpd 355 . . . 4  |-  ( ph  ->  ( ( r  e. 
Q.  /\  E. a  e.  N.  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) ) )
10514, 104syl5bi 150 . . 3  |-  ( ph  ->  ( r  e.  {
l  e.  Q.  |  E. a  e.  N.  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 a )  +Q  S ) }  ->  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) ) )
106105ssrdv 3005 . 2  |-  ( ph  ->  { l  e.  Q.  |  E. a  e.  N.  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 a )  +Q  S ) }  C_  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )
10710, 106syl5eqss 3043 1  |-  ( ph  ->  { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  S ) }  C_  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661    /\ w3a 919    = wceq 1284    e. wcel 1433   {cab 2067   A.wral 2348   E.wrex 2349   {crab 2352    C_ wss 2973   <.cop 3401   class class class wbr 3785   -->wf 4918   ` cfv 4922  (class class class)co 5532   1stc1st 5785   2ndc2nd 5786   1oc1o 6017   [cec 6127   N.cnpi 6462    <N clti 6465    ~Q ceq 6469   Q.cnq 6470    +Q cplq 6472   *Qcrq 6474    <Q cltq 6475   P.cnp 6481    +P. cpp 6483
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-iplp 6658  df-iltp 6660
This theorem is referenced by:  caucvgprlem1  6869
  Copyright terms: Public domain W3C validator