| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sucprcreg | Unicode version | ||
| Description: A class is equal to its successor iff it is a proper class (assuming the Axiom of Set Induction). (Contributed by NM, 9-Jul-2004.) |
| Ref | Expression |
|---|---|
| sucprcreg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucprc 4167 |
. 2
| |
| 2 | elirr 4284 |
. . . 4
| |
| 3 | nfv 1461 |
. . . . 5
| |
| 4 | eleq1 2141 |
. . . . 5
| |
| 5 | 3, 4 | ceqsalg 2627 |
. . . 4
|
| 6 | 2, 5 | mtbiri 632 |
. . 3
|
| 7 | velsn 3415 |
. . . . 5
| |
| 8 | olc 664 |
. . . . . 6
| |
| 9 | elun 3113 |
. . . . . . 7
| |
| 10 | ssid 3018 |
. . . . . . . . 9
| |
| 11 | df-suc 4126 |
. . . . . . . . . . 11
| |
| 12 | 11 | eqeq1i 2088 |
. . . . . . . . . 10
|
| 13 | sseq1 3020 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | sylbi 119 |
. . . . . . . . 9
|
| 15 | 10, 14 | mpbiri 166 |
. . . . . . . 8
|
| 16 | 15 | sseld 2998 |
. . . . . . 7
|
| 17 | 9, 16 | syl5bir 151 |
. . . . . 6
|
| 18 | 8, 17 | syl5 32 |
. . . . 5
|
| 19 | 7, 18 | syl5bir 151 |
. . . 4
|
| 20 | 19 | alrimiv 1795 |
. . 3
|
| 21 | 6, 20 | nsyl3 588 |
. 2
|
| 22 | 1, 21 | impbii 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-setind 4280 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-sn 3404 df-suc 4126 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |