ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funco Unicode version

Theorem funco 4960
Description: The composition of two functions is a function. Exercise 29 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
funco  |-  ( ( Fun  F  /\  Fun  G )  ->  Fun  ( F  o.  G ) )

Proof of Theorem funco
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmcoss 4619 . . . . 5  |-  dom  ( F  o.  G )  C_ 
dom  G
2 funmo 4937 . . . . . . . . . 10  |-  ( Fun 
F  ->  E* y 
z F y )
32alrimiv 1795 . . . . . . . . 9  |-  ( Fun 
F  ->  A. z E* y  z F
y )
43ralrimivw 2435 . . . . . . . 8  |-  ( Fun 
F  ->  A. x  e.  dom  G A. z E* y  z F
y )
5 dffun8 4949 . . . . . . . . 9  |-  ( Fun 
G  <->  ( Rel  G  /\  A. x  e.  dom  G E! z  x G z ) )
65simprbi 269 . . . . . . . 8  |-  ( Fun 
G  ->  A. x  e.  dom  G E! z  x G z )
74, 6anim12ci 332 . . . . . . 7  |-  ( ( Fun  F  /\  Fun  G )  ->  ( A. x  e.  dom  G E! z  x G z  /\  A. x  e. 
dom  G A. z E* y  z F
y ) )
8 r19.26 2485 . . . . . . 7  |-  ( A. x  e.  dom  G ( E! z  x G z  /\  A. z E* y  z F
y )  <->  ( A. x  e.  dom  G E! z  x G z  /\  A. x  e. 
dom  G A. z E* y  z F
y ) )
97, 8sylibr 132 . . . . . 6  |-  ( ( Fun  F  /\  Fun  G )  ->  A. x  e.  dom  G ( E! z  x G z  /\  A. z E* y  z F y ) )
10 nfv 1461 . . . . . . . 8  |-  F/ y  x G z
1110euexex 2026 . . . . . . 7  |-  ( ( E! z  x G z  /\  A. z E* y  z F
y )  ->  E* y E. z ( x G z  /\  z F y ) )
1211ralimi 2426 . . . . . 6  |-  ( A. x  e.  dom  G ( E! z  x G z  /\  A. z E* y  z F
y )  ->  A. x  e.  dom  G E* y E. z ( x G z  /\  z F y ) )
139, 12syl 14 . . . . 5  |-  ( ( Fun  F  /\  Fun  G )  ->  A. x  e.  dom  G E* y E. z ( x G z  /\  z F y ) )
14 ssralv 3058 . . . . 5  |-  ( dom  ( F  o.  G
)  C_  dom  G  -> 
( A. x  e. 
dom  G E* y E. z ( x G z  /\  z F y )  ->  A. x  e.  dom  ( F  o.  G ) E* y E. z ( x G z  /\  z F y ) ) )
151, 13, 14mpsyl 64 . . . 4  |-  ( ( Fun  F  /\  Fun  G )  ->  A. x  e.  dom  ( F  o.  G ) E* y E. z ( x G z  /\  z F y ) )
16 df-br 3786 . . . . . . 7  |-  ( x ( F  o.  G
) y  <->  <. x ,  y >.  e.  ( F  o.  G )
)
17 df-co 4372 . . . . . . . 8  |-  ( F  o.  G )  =  { <. x ,  y
>.  |  E. z
( x G z  /\  z F y ) }
1817eleq2i 2145 . . . . . . 7  |-  ( <.
x ,  y >.  e.  ( F  o.  G
)  <->  <. x ,  y
>.  e.  { <. x ,  y >.  |  E. z ( x G z  /\  z F y ) } )
19 opabid 4012 . . . . . . 7  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  E. z
( x G z  /\  z F y ) }  <->  E. z
( x G z  /\  z F y ) )
2016, 18, 193bitri 204 . . . . . 6  |-  ( x ( F  o.  G
) y  <->  E. z
( x G z  /\  z F y ) )
2120mobii 1978 . . . . 5  |-  ( E* y  x ( F  o.  G ) y  <->  E* y E. z ( x G z  /\  z F y ) )
2221ralbii 2372 . . . 4  |-  ( A. x  e.  dom  ( F  o.  G ) E* y  x ( F  o.  G ) y  <->  A. x  e.  dom  ( F  o.  G
) E* y E. z ( x G z  /\  z F y ) )
2315, 22sylibr 132 . . 3  |-  ( ( Fun  F  /\  Fun  G )  ->  A. x  e.  dom  ( F  o.  G ) E* y  x ( F  o.  G ) y )
24 relco 4839 . . 3  |-  Rel  ( F  o.  G )
2523, 24jctil 305 . 2  |-  ( ( Fun  F  /\  Fun  G )  ->  ( Rel  ( F  o.  G
)  /\  A. x  e.  dom  ( F  o.  G ) E* y  x ( F  o.  G ) y ) )
26 dffun7 4948 . 2  |-  ( Fun  ( F  o.  G
)  <->  ( Rel  ( F  o.  G )  /\  A. x  e.  dom  ( F  o.  G
) E* y  x ( F  o.  G
) y ) )
2725, 26sylibr 132 1  |-  ( ( Fun  F  /\  Fun  G )  ->  Fun  ( F  o.  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102   A.wal 1282   E.wex 1421    e. wcel 1433   E!weu 1941   E*wmo 1942   A.wral 2348    C_ wss 2973   <.cop 3401   class class class wbr 3785   {copab 3838   dom cdm 4363    o. ccom 4367   Rel wrel 4368   Fun wfun 4916
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-fun 4924
This theorem is referenced by:  fnco  5027  f1co  5121  tposfun  5898
  Copyright terms: Public domain W3C validator