| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecopovtrng | Unicode version | ||
| Description: Assuming that operation
|
| Ref | Expression |
|---|---|
| ecopopr.1 |
|
| ecopoprg.com |
|
| ecopoprg.cl |
|
| ecopoprg.ass |
|
| ecopoprg.can |
|
| Ref | Expression |
|---|---|
| ecopovtrng |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecopopr.1 |
. . . . . . 7
| |
| 2 | opabssxp 4432 |
. . . . . . 7
| |
| 3 | 1, 2 | eqsstri 3029 |
. . . . . 6
|
| 4 | 3 | brel 4410 |
. . . . 5
|
| 5 | 4 | simpld 110 |
. . . 4
|
| 6 | 3 | brel 4410 |
. . . 4
|
| 7 | 5, 6 | anim12i 331 |
. . 3
|
| 8 | 3anass 923 |
. . 3
| |
| 9 | 7, 8 | sylibr 132 |
. 2
|
| 10 | eqid 2081 |
. . 3
| |
| 11 | breq1 3788 |
. . . . 5
| |
| 12 | 11 | anbi1d 452 |
. . . 4
|
| 13 | breq1 3788 |
. . . 4
| |
| 14 | 12, 13 | imbi12d 232 |
. . 3
|
| 15 | breq2 3789 |
. . . . 5
| |
| 16 | breq1 3788 |
. . . . 5
| |
| 17 | 15, 16 | anbi12d 456 |
. . . 4
|
| 18 | 17 | imbi1d 229 |
. . 3
|
| 19 | breq2 3789 |
. . . . 5
| |
| 20 | 19 | anbi2d 451 |
. . . 4
|
| 21 | breq2 3789 |
. . . 4
| |
| 22 | 20, 21 | imbi12d 232 |
. . 3
|
| 23 | 1 | ecopoveq 6224 |
. . . . . . . 8
|
| 24 | 23 | 3adant3 958 |
. . . . . . 7
|
| 25 | 1 | ecopoveq 6224 |
. . . . . . . 8
|
| 26 | 25 | 3adant1 956 |
. . . . . . 7
|
| 27 | 24, 26 | anbi12d 456 |
. . . . . 6
|
| 28 | oveq12 5541 |
. . . . . . 7
| |
| 29 | simp2l 964 |
. . . . . . . . 9
| |
| 30 | simp2r 965 |
. . . . . . . . 9
| |
| 31 | simp1l 962 |
. . . . . . . . 9
| |
| 32 | ecopoprg.com |
. . . . . . . . . 10
| |
| 33 | 32 | adantl 271 |
. . . . . . . . 9
|
| 34 | ecopoprg.ass |
. . . . . . . . . 10
| |
| 35 | 34 | adantl 271 |
. . . . . . . . 9
|
| 36 | simp3r 967 |
. . . . . . . . 9
| |
| 37 | ecopoprg.cl |
. . . . . . . . . 10
| |
| 38 | 37 | adantl 271 |
. . . . . . . . 9
|
| 39 | 29, 30, 31, 33, 35, 36, 38 | caov411d 5706 |
. . . . . . . 8
|
| 40 | simp1r 963 |
. . . . . . . . . 10
| |
| 41 | simp3l 966 |
. . . . . . . . . 10
| |
| 42 | 40, 30, 29, 33, 35, 41, 38 | caov411d 5706 |
. . . . . . . . 9
|
| 43 | 40, 30, 29, 33, 35, 41, 38 | caov4d 5705 |
. . . . . . . . 9
|
| 44 | 42, 43 | eqtr3d 2115 |
. . . . . . . 8
|
| 45 | 39, 44 | eqeq12d 2095 |
. . . . . . 7
|
| 46 | 28, 45 | syl5ibr 154 |
. . . . . 6
|
| 47 | 27, 46 | sylbid 148 |
. . . . 5
|
| 48 | ecopoprg.can |
. . . . . . . 8
| |
| 49 | oveq2 5540 |
. . . . . . . 8
| |
| 50 | 48, 49 | impbid1 140 |
. . . . . . 7
|
| 51 | 50 | adantl 271 |
. . . . . 6
|
| 52 | 37 | caovcl 5675 |
. . . . . . 7
|
| 53 | 29, 30, 52 | syl2anc 403 |
. . . . . 6
|
| 54 | 37 | caovcl 5675 |
. . . . . . 7
|
| 55 | 31, 36, 54 | syl2anc 403 |
. . . . . 6
|
| 56 | 38, 40, 41 | caovcld 5674 |
. . . . . 6
|
| 57 | 51, 53, 55, 56 | caovcand 5683 |
. . . . 5
|
| 58 | 47, 57 | sylibd 147 |
. . . 4
|
| 59 | 1 | ecopoveq 6224 |
. . . . 5
|
| 60 | 59 | 3adant2 957 |
. . . 4
|
| 61 | 58, 60 | sylibrd 167 |
. . 3
|
| 62 | 10, 14, 18, 22, 61 | 3optocl 4436 |
. 2
|
| 63 | 9, 62 | mpcom 36 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-xp 4369 df-iota 4887 df-fv 4930 df-ov 5535 |
| This theorem is referenced by: ecopoverg 6230 |
| Copyright terms: Public domain | W3C validator |