![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simp1l | Unicode version |
Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
Ref | Expression |
---|---|
simp1l |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 107 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | 3ad2ant1 959 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 df-3an 921 |
This theorem is referenced by: simpl1l 989 simpr1l 995 simp11l 1049 simp21l 1055 simp31l 1061 en2lp 4297 tfisi 4328 funprg 4969 nnsucsssuc 6094 ecopovtrn 6226 ecopovtrng 6229 addassnqg 6572 distrnqg 6577 ltsonq 6588 ltanqg 6590 ltmnqg 6591 distrnq0 6649 addassnq0 6652 mulasssrg 6935 distrsrg 6936 lttrsr 6939 ltsosr 6941 ltasrg 6947 mulextsr1lem 6956 mulextsr1 6957 axmulass 7039 axdistr 7040 dmdcanap 7810 lt2msq1 7963 ltdiv2 7965 lediv2 7969 modqdi 9394 expaddzaplem 9519 expaddzap 9520 expmulzap 9522 resqrtcl 9915 prmexpb 10530 |
Copyright terms: Public domain | W3C validator |