| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfvres | Unicode version | ||
| Description: The value of a non-member of a restriction is the empty set. (Contributed by NM, 13-Nov-1995.) |
| Ref | Expression |
|---|---|
| nfvres |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv 4930 |
. . . . . . . . . 10
| |
| 2 | df-iota 4887 |
. . . . . . . . . 10
| |
| 3 | 1, 2 | eqtri 2101 |
. . . . . . . . 9
|
| 4 | 3 | eleq2i 2145 |
. . . . . . . 8
|
| 5 | eluni 3604 |
. . . . . . . 8
| |
| 6 | 4, 5 | bitri 182 |
. . . . . . 7
|
| 7 | exsimpr 1549 |
. . . . . . 7
| |
| 8 | 6, 7 | sylbi 119 |
. . . . . 6
|
| 9 | df-clab 2068 |
. . . . . . . 8
| |
| 10 | nfv 1461 |
. . . . . . . . 9
| |
| 11 | sneq 3409 |
. . . . . . . . . 10
| |
| 12 | 11 | eqeq2d 2092 |
. . . . . . . . 9
|
| 13 | 10, 12 | sbie 1714 |
. . . . . . . 8
|
| 14 | 9, 13 | bitri 182 |
. . . . . . 7
|
| 15 | 14 | exbii 1536 |
. . . . . 6
|
| 16 | 8, 15 | sylib 120 |
. . . . 5
|
| 17 | euabsn2 3461 |
. . . . 5
| |
| 18 | 16, 17 | sylibr 132 |
. . . 4
|
| 19 | euex 1971 |
. . . 4
| |
| 20 | df-br 3786 |
. . . . . . . 8
| |
| 21 | df-res 4375 |
. . . . . . . . 9
| |
| 22 | 21 | eleq2i 2145 |
. . . . . . . 8
|
| 23 | 20, 22 | bitri 182 |
. . . . . . 7
|
| 24 | elin 3155 |
. . . . . . . 8
| |
| 25 | 24 | simprbi 269 |
. . . . . . 7
|
| 26 | 23, 25 | sylbi 119 |
. . . . . 6
|
| 27 | opelxp1 4395 |
. . . . . 6
| |
| 28 | 26, 27 | syl 14 |
. . . . 5
|
| 29 | 28 | exlimiv 1529 |
. . . 4
|
| 30 | 18, 19, 29 | 3syl 17 |
. . 3
|
| 31 | 30 | con3i 594 |
. 2
|
| 32 | 31 | eq0rdv 3288 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-xp 4369 df-res 4375 df-iota 4887 df-fv 4930 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |