ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsn Unicode version

Theorem elsn 3414
Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.)
Hypothesis
Ref Expression
elsn.1  |-  A  e. 
_V
Assertion
Ref Expression
elsn  |-  ( A  e.  { B }  <->  A  =  B )

Proof of Theorem elsn
StepHypRef Expression
1 elsn.1 . 2  |-  A  e. 
_V
2 elsng 3413 . 2  |-  ( A  e.  _V  ->  ( A  e.  { B } 
<->  A  =  B ) )
31, 2ax-mp 7 1  |-  ( A  e.  { B }  <->  A  =  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 103    = wceq 1284    e. wcel 1433   _Vcvv 2601   {csn 3398
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-sn 3404
This theorem is referenced by:  velsn  3415  sneqr  3552  onsucelsucexmid  4273  ordsoexmid  4305  opthprc  4409  dmsnm  4806  dmsnopg  4812  cnvcnvsn  4817  sniota  4914  fsn  5356  eusvobj2  5518  opelreal  6996
  Copyright terms: Public domain W3C validator