ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffvresb Unicode version

Theorem ffvresb 5349
Description: A necessary and sufficient condition for a restricted function. (Contributed by Mario Carneiro, 14-Nov-2013.)
Assertion
Ref Expression
ffvresb  |-  ( Fun 
F  ->  ( ( F  |`  A ) : A --> B  <->  A. x  e.  A  ( x  e.  dom  F  /\  ( F `  x )  e.  B ) ) )
Distinct variable groups:    x, A    x, B    x, F

Proof of Theorem ffvresb
StepHypRef Expression
1 fdm 5070 . . . . . 6  |-  ( ( F  |`  A ) : A --> B  ->  dom  ( F  |`  A )  =  A )
2 dmres 4650 . . . . . . 7  |-  dom  ( F  |`  A )  =  ( A  i^i  dom  F )
3 inss2 3187 . . . . . . 7  |-  ( A  i^i  dom  F )  C_ 
dom  F
42, 3eqsstri 3029 . . . . . 6  |-  dom  ( F  |`  A )  C_  dom  F
51, 4syl6eqssr 3050 . . . . 5  |-  ( ( F  |`  A ) : A --> B  ->  A  C_ 
dom  F )
65sselda 2999 . . . 4  |-  ( ( ( F  |`  A ) : A --> B  /\  x  e.  A )  ->  x  e.  dom  F
)
7 fvres 5219 . . . . . 6  |-  ( x  e.  A  ->  (
( F  |`  A ) `
 x )  =  ( F `  x
) )
87adantl 271 . . . . 5  |-  ( ( ( F  |`  A ) : A --> B  /\  x  e.  A )  ->  ( ( F  |`  A ) `  x
)  =  ( F `
 x ) )
9 ffvelrn 5321 . . . . 5  |-  ( ( ( F  |`  A ) : A --> B  /\  x  e.  A )  ->  ( ( F  |`  A ) `  x
)  e.  B )
108, 9eqeltrrd 2156 . . . 4  |-  ( ( ( F  |`  A ) : A --> B  /\  x  e.  A )  ->  ( F `  x
)  e.  B )
116, 10jca 300 . . 3  |-  ( ( ( F  |`  A ) : A --> B  /\  x  e.  A )  ->  ( x  e.  dom  F  /\  ( F `  x )  e.  B
) )
1211ralrimiva 2434 . 2  |-  ( ( F  |`  A ) : A --> B  ->  A. x  e.  A  ( x  e.  dom  F  /\  ( F `  x )  e.  B ) )
13 simpl 107 . . . . . . 7  |-  ( ( x  e.  dom  F  /\  ( F `  x
)  e.  B )  ->  x  e.  dom  F )
1413ralimi 2426 . . . . . 6  |-  ( A. x  e.  A  (
x  e.  dom  F  /\  ( F `  x
)  e.  B )  ->  A. x  e.  A  x  e.  dom  F )
15 dfss3 2989 . . . . . 6  |-  ( A 
C_  dom  F  <->  A. x  e.  A  x  e.  dom  F )
1614, 15sylibr 132 . . . . 5  |-  ( A. x  e.  A  (
x  e.  dom  F  /\  ( F `  x
)  e.  B )  ->  A  C_  dom  F )
17 funfn 4951 . . . . . 6  |-  ( Fun 
F  <->  F  Fn  dom  F )
18 fnssres 5032 . . . . . 6  |-  ( ( F  Fn  dom  F  /\  A  C_  dom  F
)  ->  ( F  |`  A )  Fn  A
)
1917, 18sylanb 278 . . . . 5  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( F  |`  A )  Fn  A )
2016, 19sylan2 280 . . . 4  |-  ( ( Fun  F  /\  A. x  e.  A  (
x  e.  dom  F  /\  ( F `  x
)  e.  B ) )  ->  ( F  |`  A )  Fn  A
)
21 simpr 108 . . . . . . . 8  |-  ( ( x  e.  dom  F  /\  ( F `  x
)  e.  B )  ->  ( F `  x )  e.  B
)
227eleq1d 2147 . . . . . . . 8  |-  ( x  e.  A  ->  (
( ( F  |`  A ) `  x
)  e.  B  <->  ( F `  x )  e.  B
) )
2321, 22syl5ibr 154 . . . . . . 7  |-  ( x  e.  A  ->  (
( x  e.  dom  F  /\  ( F `  x )  e.  B
)  ->  ( ( F  |`  A ) `  x )  e.  B
) )
2423ralimia 2424 . . . . . 6  |-  ( A. x  e.  A  (
x  e.  dom  F  /\  ( F `  x
)  e.  B )  ->  A. x  e.  A  ( ( F  |`  A ) `  x
)  e.  B )
2524adantl 271 . . . . 5  |-  ( ( Fun  F  /\  A. x  e.  A  (
x  e.  dom  F  /\  ( F `  x
)  e.  B ) )  ->  A. x  e.  A  ( ( F  |`  A ) `  x )  e.  B
)
26 fnfvrnss 5346 . . . . 5  |-  ( ( ( F  |`  A )  Fn  A  /\  A. x  e.  A  (
( F  |`  A ) `
 x )  e.  B )  ->  ran  ( F  |`  A ) 
C_  B )
2720, 25, 26syl2anc 403 . . . 4  |-  ( ( Fun  F  /\  A. x  e.  A  (
x  e.  dom  F  /\  ( F `  x
)  e.  B ) )  ->  ran  ( F  |`  A )  C_  B
)
28 df-f 4926 . . . 4  |-  ( ( F  |`  A ) : A --> B  <->  ( ( F  |`  A )  Fn  A  /\  ran  ( F  |`  A )  C_  B ) )
2920, 27, 28sylanbrc 408 . . 3  |-  ( ( Fun  F  /\  A. x  e.  A  (
x  e.  dom  F  /\  ( F `  x
)  e.  B ) )  ->  ( F  |`  A ) : A --> B )
3029ex 113 . 2  |-  ( Fun 
F  ->  ( A. x  e.  A  (
x  e.  dom  F  /\  ( F `  x
)  e.  B )  ->  ( F  |`  A ) : A --> B ) )
3112, 30impbid2 141 1  |-  ( Fun 
F  ->  ( ( F  |`  A ) : A --> B  <->  A. x  e.  A  ( x  e.  dom  F  /\  ( F `  x )  e.  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   A.wral 2348    i^i cin 2972    C_ wss 2973   dom cdm 4363   ran crn 4364    |` cres 4365   Fun wfun 4916    Fn wfn 4917   -->wf 4918   ` cfv 4922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator