ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funtpg Unicode version

Theorem funtpg 4970
Description: A set of three pairs is a function if their first members are different. (Contributed by Alexander van der Vekens, 5-Dec-2017.)
Assertion
Ref Expression
funtpg  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  Fun  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. } )

Proof of Theorem funtpg
StepHypRef Expression
1 3simpa 935 . . . 4  |-  ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W )  ->  ( X  e.  U  /\  Y  e.  V
) )
2 3simpa 935 . . . 4  |-  ( ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  ->  ( A  e.  F  /\  B  e.  G
) )
3 simp1 938 . . . 4  |-  ( ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/=  Z )  ->  X  =/=  Y )
4 funprg 4969 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V
)  /\  ( A  e.  F  /\  B  e.  G )  /\  X  =/=  Y )  ->  Fun  {
<. X ,  A >. , 
<. Y ,  B >. } )
51, 2, 3, 4syl3an 1211 . . 3  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  Fun  { <. X ,  A >. ,  <. Y ,  B >. } )
6 simp13 970 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  Z  e.  W )
7 simp23 973 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  C  e.  H )
8 funsng 4966 . . . 4  |-  ( ( Z  e.  W  /\  C  e.  H )  ->  Fun  { <. Z ,  C >. } )
96, 7, 8syl2anc 403 . . 3  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  Fun  { <. Z ,  C >. } )
1023ad2ant2 960 . . . . . 6  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  -> 
( A  e.  F  /\  B  e.  G
) )
11 dmpropg 4813 . . . . . 6  |-  ( ( A  e.  F  /\  B  e.  G )  ->  dom  { <. X ,  A >. ,  <. Y ,  B >. }  =  { X ,  Y }
)
1210, 11syl 14 . . . . 5  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  dom  { <. X ,  A >. ,  <. Y ,  B >. }  =  { X ,  Y } )
13 dmsnopg 4812 . . . . . 6  |-  ( C  e.  H  ->  dom  {
<. Z ,  C >. }  =  { Z }
)
147, 13syl 14 . . . . 5  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  dom  { <. Z ,  C >. }  =  { Z } )
1512, 14ineq12d 3168 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  -> 
( dom  { <. X ,  A >. ,  <. Y ,  B >. }  i^i  dom  {
<. Z ,  C >. } )  =  ( { X ,  Y }  i^i  { Z } ) )
16 elpri 3421 . . . . . . . 8  |-  ( Z  e.  { X ,  Y }  ->  ( Z  =  X  \/  Z  =  Y ) )
17 nner 2249 . . . . . . . . . . . 12  |-  ( X  =  Z  ->  -.  X  =/=  Z )
1817eqcoms 2084 . . . . . . . . . . 11  |-  ( Z  =  X  ->  -.  X  =/=  Z )
19 3mix2 1108 . . . . . . . . . . 11  |-  ( -.  X  =/=  Z  -> 
( -.  X  =/= 
Y  \/  -.  X  =/=  Z  \/  -.  Y  =/=  Z ) )
2018, 19syl 14 . . . . . . . . . 10  |-  ( Z  =  X  ->  ( -.  X  =/=  Y  \/  -.  X  =/=  Z  \/  -.  Y  =/=  Z
) )
21 nner 2249 . . . . . . . . . . . 12  |-  ( Y  =  Z  ->  -.  Y  =/=  Z )
2221eqcoms 2084 . . . . . . . . . . 11  |-  ( Z  =  Y  ->  -.  Y  =/=  Z )
23 3mix3 1109 . . . . . . . . . . 11  |-  ( -.  Y  =/=  Z  -> 
( -.  X  =/= 
Y  \/  -.  X  =/=  Z  \/  -.  Y  =/=  Z ) )
2422, 23syl 14 . . . . . . . . . 10  |-  ( Z  =  Y  ->  ( -.  X  =/=  Y  \/  -.  X  =/=  Z  \/  -.  Y  =/=  Z
) )
2520, 24jaoi 668 . . . . . . . . 9  |-  ( ( Z  =  X  \/  Z  =  Y )  ->  ( -.  X  =/= 
Y  \/  -.  X  =/=  Z  \/  -.  Y  =/=  Z ) )
26 3ianorr 1240 . . . . . . . . 9  |-  ( ( -.  X  =/=  Y  \/  -.  X  =/=  Z  \/  -.  Y  =/=  Z
)  ->  -.  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )
2725, 26syl 14 . . . . . . . 8  |-  ( ( Z  =  X  \/  Z  =  Y )  ->  -.  ( X  =/= 
Y  /\  X  =/=  Z  /\  Y  =/=  Z
) )
2816, 27syl 14 . . . . . . 7  |-  ( Z  e.  { X ,  Y }  ->  -.  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )
2928con2i 589 . . . . . 6  |-  ( ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/=  Z )  ->  -.  Z  e.  { X ,  Y } )
30 disjsn 3454 . . . . . 6  |-  ( ( { X ,  Y }  i^i  { Z }
)  =  (/)  <->  -.  Z  e.  { X ,  Y } )
3129, 30sylibr 132 . . . . 5  |-  ( ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/=  Z )  ->  ( { X ,  Y }  i^i  { Z } )  =  (/) )
32313ad2ant3 961 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  -> 
( { X ,  Y }  i^i  { Z } )  =  (/) )
3315, 32eqtrd 2113 . . 3  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  -> 
( dom  { <. X ,  A >. ,  <. Y ,  B >. }  i^i  dom  {
<. Z ,  C >. } )  =  (/) )
34 funun 4964 . . 3  |-  ( ( ( Fun  { <. X ,  A >. ,  <. Y ,  B >. }  /\  Fun  { <. Z ,  C >. } )  /\  ( dom  { <. X ,  A >. ,  <. Y ,  B >. }  i^i  dom  { <. Z ,  C >. } )  =  (/) )  ->  Fun  ( { <. X ,  A >. ,  <. Y ,  B >. }  u.  { <. Z ,  C >. } ) )
355, 9, 33, 34syl21anc 1168 . 2  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  Fun  ( { <. X ,  A >. ,  <. Y ,  B >. }  u.  { <. Z ,  C >. } ) )
36 df-tp 3406 . . 3  |-  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. }  =  ( { <. X ,  A >. ,  <. Y ,  B >. }  u.  { <. Z ,  C >. } )
3736funeqi 4942 . 2  |-  ( Fun 
{ <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. }  <->  Fun  ( { <. X ,  A >. ,  <. Y ,  B >. }  u.  {
<. Z ,  C >. } ) )
3835, 37sylibr 132 1  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  Fun  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    \/ wo 661    \/ w3o 918    /\ w3a 919    = wceq 1284    e. wcel 1433    =/= wne 2245    u. cun 2971    i^i cin 2972   (/)c0 3251   {csn 3398   {cpr 3399   {ctp 3400   <.cop 3401   dom cdm 4363   Fun wfun 4916
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-tp 3406  df-op 3407  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-fun 4924
This theorem is referenced by:  fntpg  4975
  Copyright terms: Public domain W3C validator