ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzsucd Unicode version

Theorem frec2uzsucd 9403
Description: The value of  G (see frec2uz0d 9401) at a successor. (Contributed by Jim Kingdon, 16-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
frec2uzzd.a  |-  ( ph  ->  A  e.  om )
Assertion
Ref Expression
frec2uzsucd  |-  ( ph  ->  ( G `  suc  A )  =  ( ( G `  A )  +  1 ) )
Distinct variable group:    x, C
Allowed substitution hints:    ph( x)    A( x)    G( x)

Proof of Theorem frec2uzsucd
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frec2uz.1 . . . 4  |-  ( ph  ->  C  e.  ZZ )
2 frec2uzzd.a . . . 4  |-  ( ph  ->  A  e.  om )
3 zex 8360 . . . . . . . 8  |-  ZZ  e.  _V
43mptex 5408 . . . . . . 7  |-  ( x  e.  ZZ  |->  ( x  +  1 ) )  e.  _V
5 vex 2604 . . . . . . 7  |-  y  e. 
_V
64, 5fvex 5215 . . . . . 6  |-  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  y )  e.  _V
76ax-gen 1378 . . . . 5  |-  A. y
( ( x  e.  ZZ  |->  ( x  + 
1 ) ) `  y )  e.  _V
8 frecsuc 6014 . . . . 5  |-  ( ( A. y ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  y )  e.  _V  /\  C  e.  ZZ  /\  A  e. 
om )  ->  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C ) `  suc  A )  =  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  C
) `  A )
) )
97, 8mp3an1 1255 . . . 4  |-  ( ( C  e.  ZZ  /\  A  e.  om )  ->  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C ) `  suc  A )  =  ( ( x  e.  ZZ  |->  ( x  +  1
) ) `  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C ) `  A
) ) )
101, 2, 9syl2anc 403 . . 3  |-  ( ph  ->  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C ) `  suc  A )  =  ( ( x  e.  ZZ  |->  ( x  +  1
) ) `  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C ) `  A
) ) )
11 frec2uz.2 . . . 4  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
1211fveq1i 5199 . . 3  |-  ( G `
 suc  A )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C ) `  suc  A )
1311fveq1i 5199 . . . 4  |-  ( G `
 A )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C ) `  A )
1413fveq2i 5201 . . 3  |-  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  ( G `
 A ) )  =  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `
 (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C ) `
 A ) )
1510, 12, 143eqtr4g 2138 . 2  |-  ( ph  ->  ( G `  suc  A )  =  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  ( G `
 A ) ) )
161, 11, 2frec2uzzd 9402 . . 3  |-  ( ph  ->  ( G `  A
)  e.  ZZ )
17 oveq1 5539 . . . 4  |-  ( z  =  ( G `  A )  ->  (
z  +  1 )  =  ( ( G `
 A )  +  1 ) )
18 oveq1 5539 . . . . 5  |-  ( x  =  z  ->  (
x  +  1 )  =  ( z  +  1 ) )
1918cbvmptv 3873 . . . 4  |-  ( x  e.  ZZ  |->  ( x  +  1 ) )  =  ( z  e.  ZZ  |->  ( z  +  1 ) )
20 peano2z 8387 . . . 4  |-  ( z  e.  ZZ  ->  (
z  +  1 )  e.  ZZ )
2117, 19, 20fvmpt3 5272 . . 3  |-  ( ( G `  A )  e.  ZZ  ->  (
( x  e.  ZZ  |->  ( x  +  1
) ) `  ( G `  A )
)  =  ( ( G `  A )  +  1 ) )
2216, 21syl 14 . 2  |-  ( ph  ->  ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) `  ( G `  A ) )  =  ( ( G `  A )  +  1 ) )
2315, 22eqtrd 2113 1  |-  ( ph  ->  ( G `  suc  A )  =  ( ( G `  A )  +  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1282    = wceq 1284    e. wcel 1433   _Vcvv 2601    |-> cmpt 3839   suc csuc 4120   omcom 4331   ` cfv 4922  (class class class)co 5532  freccfrec 6000   1c1 6982    + caddc 6984   ZZcz 8351
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-recs 5943  df-frec 6001  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352
This theorem is referenced by:  frec2uzuzd  9404  frec2uzltd  9405  frec2uzrand  9407  frec2uzrdg  9411  frecuzrdgsuc  9417  frecfzennn  9419
  Copyright terms: Public domain W3C validator