| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frecrdg | Unicode version | ||
| Description: Transfinite recursion
restricted to omega.
Given a suitable characteristic function, df-frec 6001 produces the same
results as df-irdg 5980 restricted to
Presumably the theorem would also hold if |
| Ref | Expression |
|---|---|
| frecrdg.1 |
|
| frecrdg.2 |
|
| frecrdg.inc |
|
| Ref | Expression |
|---|---|
| frecrdg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frecrdg.1 |
. . . 4
| |
| 2 | vex 2604 |
. . . . . 6
| |
| 3 | funfvex 5212 |
. . . . . . 7
| |
| 4 | 3 | funfni 5019 |
. . . . . 6
|
| 5 | 2, 4 | mpan2 415 |
. . . . 5
|
| 6 | 5 | alrimiv 1795 |
. . . 4
|
| 7 | 1, 6 | syl 14 |
. . 3
|
| 8 | frecrdg.2 |
. . 3
| |
| 9 | frecfnom 6009 |
. . 3
| |
| 10 | 7, 8, 9 | syl2anc 403 |
. 2
|
| 11 | rdgifnon2 5990 |
. . . 4
| |
| 12 | 7, 8, 11 | syl2anc 403 |
. . 3
|
| 13 | omsson 4353 |
. . 3
| |
| 14 | fnssres 5032 |
. . 3
| |
| 15 | 12, 13, 14 | sylancl 404 |
. 2
|
| 16 | fveq2 5198 |
. . . . 5
| |
| 17 | fveq2 5198 |
. . . . 5
| |
| 18 | 16, 17 | eqeq12d 2095 |
. . . 4
|
| 19 | fveq2 5198 |
. . . . 5
| |
| 20 | fveq2 5198 |
. . . . 5
| |
| 21 | 19, 20 | eqeq12d 2095 |
. . . 4
|
| 22 | fveq2 5198 |
. . . . 5
| |
| 23 | fveq2 5198 |
. . . . 5
| |
| 24 | 22, 23 | eqeq12d 2095 |
. . . 4
|
| 25 | frec0g 6006 |
. . . . . 6
| |
| 26 | 8, 25 | syl 14 |
. . . . 5
|
| 27 | peano1 4335 |
. . . . . . 7
| |
| 28 | fvres 5219 |
. . . . . . 7
| |
| 29 | 27, 28 | ax-mp 7 |
. . . . . 6
|
| 30 | rdg0g 5998 |
. . . . . . 7
| |
| 31 | 8, 30 | syl 14 |
. . . . . 6
|
| 32 | 29, 31 | syl5eq 2125 |
. . . . 5
|
| 33 | 26, 32 | eqtr4d 2116 |
. . . 4
|
| 34 | simpr 108 |
. . . . . . . . . 10
| |
| 35 | fvres 5219 |
. . . . . . . . . . 11
| |
| 36 | 35 | ad2antlr 472 |
. . . . . . . . . 10
|
| 37 | 34, 36 | eqtrd 2113 |
. . . . . . . . 9
|
| 38 | 37 | fveq2d 5202 |
. . . . . . . 8
|
| 39 | 7, 8 | jca 300 |
. . . . . . . . . 10
|
| 40 | frecsuc 6014 |
. . . . . . . . . . 11
| |
| 41 | 40 | 3expa 1138 |
. . . . . . . . . 10
|
| 42 | 39, 41 | sylan 277 |
. . . . . . . . 9
|
| 43 | 42 | adantr 270 |
. . . . . . . 8
|
| 44 | 1 | adantr 270 |
. . . . . . . . . 10
|
| 45 | 8 | adantr 270 |
. . . . . . . . . 10
|
| 46 | simpr 108 |
. . . . . . . . . . 11
| |
| 47 | nnon 4350 |
. . . . . . . . . . 11
| |
| 48 | 46, 47 | syl 14 |
. . . . . . . . . 10
|
| 49 | frecrdg.inc |
. . . . . . . . . . 11
| |
| 50 | 49 | adantr 270 |
. . . . . . . . . 10
|
| 51 | 44, 45, 48, 50 | rdgisucinc 5995 |
. . . . . . . . 9
|
| 52 | 51 | adantr 270 |
. . . . . . . 8
|
| 53 | 38, 43, 52 | 3eqtr4d 2123 |
. . . . . . 7
|
| 54 | peano2 4336 |
. . . . . . . . 9
| |
| 55 | fvres 5219 |
. . . . . . . . 9
| |
| 56 | 54, 55 | syl 14 |
. . . . . . . 8
|
| 57 | 56 | ad2antlr 472 |
. . . . . . 7
|
| 58 | 53, 57 | eqtr4d 2116 |
. . . . . 6
|
| 59 | 58 | ex 113 |
. . . . 5
|
| 60 | 59 | expcom 114 |
. . . 4
|
| 61 | 18, 21, 24, 33, 60 | finds2 4342 |
. . 3
|
| 62 | 61 | impcom 123 |
. 2
|
| 63 | 10, 15, 62 | eqfnfvd 5289 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-recs 5943 df-irdg 5980 df-frec 6001 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |