ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  freccl Unicode version

Theorem freccl 6016
Description: Closure for finite recursion. (Contributed by Jim Kingdon, 25-May-2020.)
Hypotheses
Ref Expression
freccl.ex  |-  ( ph  ->  A. z ( F `
 z )  e. 
_V )
freccl.a  |-  ( ph  ->  A  e.  S )
freccl.cl  |-  ( (
ph  /\  z  e.  S )  ->  ( F `  z )  e.  S )
freccl.b  |-  ( ph  ->  B  e.  om )
Assertion
Ref Expression
freccl  |-  ( ph  ->  (frec ( F ,  A ) `  B
)  e.  S )
Distinct variable groups:    z, A    z, F    z, S    ph, z
Allowed substitution hint:    B( z)

Proof of Theorem freccl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 freccl.b . 2  |-  ( ph  ->  B  e.  om )
2 fveq2 5198 . . . . 5  |-  ( x  =  B  ->  (frec ( F ,  A ) `
 x )  =  (frec ( F ,  A ) `  B
) )
32eleq1d 2147 . . . 4  |-  ( x  =  B  ->  (
(frec ( F ,  A ) `  x
)  e.  S  <->  (frec ( F ,  A ) `  B )  e.  S
) )
43imbi2d 228 . . 3  |-  ( x  =  B  ->  (
( ph  ->  (frec ( F ,  A ) `
 x )  e.  S )  <->  ( ph  ->  (frec ( F ,  A ) `  B
)  e.  S ) ) )
5 fveq2 5198 . . . . 5  |-  ( x  =  (/)  ->  (frec ( F ,  A ) `
 x )  =  (frec ( F ,  A ) `  (/) ) )
65eleq1d 2147 . . . 4  |-  ( x  =  (/)  ->  ( (frec ( F ,  A
) `  x )  e.  S  <->  (frec ( F ,  A ) `  (/) )  e.  S ) )
7 fveq2 5198 . . . . 5  |-  ( x  =  y  ->  (frec ( F ,  A ) `
 x )  =  (frec ( F ,  A ) `  y
) )
87eleq1d 2147 . . . 4  |-  ( x  =  y  ->  (
(frec ( F ,  A ) `  x
)  e.  S  <->  (frec ( F ,  A ) `  y )  e.  S
) )
9 fveq2 5198 . . . . 5  |-  ( x  =  suc  y  -> 
(frec ( F ,  A ) `  x
)  =  (frec ( F ,  A ) `
 suc  y )
)
109eleq1d 2147 . . . 4  |-  ( x  =  suc  y  -> 
( (frec ( F ,  A ) `  x )  e.  S  <->  (frec ( F ,  A
) `  suc  y )  e.  S ) )
11 freccl.a . . . . . 6  |-  ( ph  ->  A  e.  S )
12 frec0g 6006 . . . . . 6  |-  ( A  e.  S  ->  (frec ( F ,  A ) `
 (/) )  =  A )
1311, 12syl 14 . . . . 5  |-  ( ph  ->  (frec ( F ,  A ) `  (/) )  =  A )
1413, 11eqeltrd 2155 . . . 4  |-  ( ph  ->  (frec ( F ,  A ) `  (/) )  e.  S )
15 freccl.ex . . . . . . . . . 10  |-  ( ph  ->  A. z ( F `
 z )  e. 
_V )
16 frecfnom 6009 . . . . . . . . . 10  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  S )  -> frec ( F ,  A )  Fn 
om )
1715, 11, 16syl2anc 403 . . . . . . . . 9  |-  ( ph  -> frec ( F ,  A
)  Fn  om )
18 funfvex 5212 . . . . . . . . . 10  |-  ( ( Fun frec ( F ,  A )  /\  y  e.  dom frec ( F ,  A ) )  -> 
(frec ( F ,  A ) `  y
)  e.  _V )
1918funfni 5019 . . . . . . . . 9  |-  ( (frec ( F ,  A
)  Fn  om  /\  y  e.  om )  ->  (frec ( F ,  A ) `  y
)  e.  _V )
2017, 19sylan 277 . . . . . . . 8  |-  ( (
ph  /\  y  e.  om )  ->  (frec ( F ,  A ) `  y )  e.  _V )
21 isset 2605 . . . . . . . 8  |-  ( (frec ( F ,  A
) `  y )  e.  _V  <->  E. z  z  =  (frec ( F ,  A ) `  y
) )
2220, 21sylib 120 . . . . . . 7  |-  ( (
ph  /\  y  e.  om )  ->  E. z 
z  =  (frec ( F ,  A ) `
 y ) )
23 freccl.cl . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  S )  ->  ( F `  z )  e.  S )
2423ex 113 . . . . . . . . . . . 12  |-  ( ph  ->  ( z  e.  S  ->  ( F `  z
)  e.  S ) )
2524adantr 270 . . . . . . . . . . 11  |-  ( (
ph  /\  z  =  (frec ( F ,  A
) `  y )
)  ->  ( z  e.  S  ->  ( F `
 z )  e.  S ) )
26 eleq1 2141 . . . . . . . . . . . 12  |-  ( z  =  (frec ( F ,  A ) `  y )  ->  (
z  e.  S  <->  (frec ( F ,  A ) `  y )  e.  S
) )
2726adantl 271 . . . . . . . . . . 11  |-  ( (
ph  /\  z  =  (frec ( F ,  A
) `  y )
)  ->  ( z  e.  S  <->  (frec ( F ,  A ) `  y
)  e.  S ) )
28 fveq2 5198 . . . . . . . . . . . . 13  |-  ( z  =  (frec ( F ,  A ) `  y )  ->  ( F `  z )  =  ( F `  (frec ( F ,  A
) `  y )
) )
2928eleq1d 2147 . . . . . . . . . . . 12  |-  ( z  =  (frec ( F ,  A ) `  y )  ->  (
( F `  z
)  e.  S  <->  ( F `  (frec ( F ,  A ) `  y
) )  e.  S
) )
3029adantl 271 . . . . . . . . . . 11  |-  ( (
ph  /\  z  =  (frec ( F ,  A
) `  y )
)  ->  ( ( F `  z )  e.  S  <->  ( F `  (frec ( F ,  A
) `  y )
)  e.  S ) )
3125, 27, 303imtr3d 200 . . . . . . . . . 10  |-  ( (
ph  /\  z  =  (frec ( F ,  A
) `  y )
)  ->  ( (frec ( F ,  A ) `
 y )  e.  S  ->  ( F `  (frec ( F ,  A ) `  y
) )  e.  S
) )
3231ex 113 . . . . . . . . 9  |-  ( ph  ->  ( z  =  (frec ( F ,  A
) `  y )  ->  ( (frec ( F ,  A ) `  y )  e.  S  ->  ( F `  (frec ( F ,  A ) `
 y ) )  e.  S ) ) )
3332exlimdv 1740 . . . . . . . 8  |-  ( ph  ->  ( E. z  z  =  (frec ( F ,  A ) `  y )  ->  (
(frec ( F ,  A ) `  y
)  e.  S  -> 
( F `  (frec ( F ,  A ) `
 y ) )  e.  S ) ) )
3433adantr 270 . . . . . . 7  |-  ( (
ph  /\  y  e.  om )  ->  ( E. z  z  =  (frec ( F ,  A ) `
 y )  -> 
( (frec ( F ,  A ) `  y )  e.  S  ->  ( F `  (frec ( F ,  A ) `
 y ) )  e.  S ) ) )
3522, 34mpd 13 . . . . . 6  |-  ( (
ph  /\  y  e.  om )  ->  ( (frec ( F ,  A ) `
 y )  e.  S  ->  ( F `  (frec ( F ,  A ) `  y
) )  e.  S
) )
3615adantr 270 . . . . . . . 8  |-  ( (
ph  /\  y  e.  om )  ->  A. z
( F `  z
)  e.  _V )
3711adantr 270 . . . . . . . 8  |-  ( (
ph  /\  y  e.  om )  ->  A  e.  S )
38 simpr 108 . . . . . . . 8  |-  ( (
ph  /\  y  e.  om )  ->  y  e.  om )
39 frecsuc 6014 . . . . . . . 8  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  S  /\  y  e.  om )  ->  (frec ( F ,  A ) `  suc  y )  =  ( F `  (frec ( F ,  A ) `
 y ) ) )
4036, 37, 38, 39syl3anc 1169 . . . . . . 7  |-  ( (
ph  /\  y  e.  om )  ->  (frec ( F ,  A ) `  suc  y )  =  ( F `  (frec ( F ,  A ) `
 y ) ) )
4140eleq1d 2147 . . . . . 6  |-  ( (
ph  /\  y  e.  om )  ->  ( (frec ( F ,  A ) `
 suc  y )  e.  S  <->  ( F `  (frec ( F ,  A
) `  y )
)  e.  S ) )
4235, 41sylibrd 167 . . . . 5  |-  ( (
ph  /\  y  e.  om )  ->  ( (frec ( F ,  A ) `
 y )  e.  S  ->  (frec ( F ,  A ) `  suc  y )  e.  S ) )
4342expcom 114 . . . 4  |-  ( y  e.  om  ->  ( ph  ->  ( (frec ( F ,  A ) `
 y )  e.  S  ->  (frec ( F ,  A ) `  suc  y )  e.  S ) ) )
446, 8, 10, 14, 43finds2 4342 . . 3  |-  ( x  e.  om  ->  ( ph  ->  (frec ( F ,  A ) `  x )  e.  S
) )
454, 44vtoclga 2664 . 2  |-  ( B  e.  om  ->  ( ph  ->  (frec ( F ,  A ) `  B )  e.  S
) )
461, 45mpcom 36 1  |-  ( ph  ->  (frec ( F ,  A ) `  B
)  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103   A.wal 1282    = wceq 1284   E.wex 1421    e. wcel 1433   _Vcvv 2601   (/)c0 3251   suc csuc 4120   omcom 4331    Fn wfn 4917   ` cfv 4922  freccfrec 6000
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-recs 5943  df-frec 6001
This theorem is referenced by:  frecuzrdgrrn  9410
  Copyright terms: Public domain W3C validator