ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funprg Unicode version

Theorem funprg 4969
Description: A set of two pairs is a function if their first members are different. (Contributed by FL, 26-Jun-2011.)
Assertion
Ref Expression
funprg  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  Fun  {
<. A ,  C >. , 
<. B ,  D >. } )

Proof of Theorem funprg
StepHypRef Expression
1 simp1l 962 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  A  e.  V )
2 simp2l 964 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  C  e.  X )
3 funsng 4966 . . . 4  |-  ( ( A  e.  V  /\  C  e.  X )  ->  Fun  { <. A ,  C >. } )
41, 2, 3syl2anc 403 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  Fun  {
<. A ,  C >. } )
5 simp1r 963 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  B  e.  W )
6 simp2r 965 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  D  e.  Y )
7 funsng 4966 . . . 4  |-  ( ( B  e.  W  /\  D  e.  Y )  ->  Fun  { <. B ,  D >. } )
85, 6, 7syl2anc 403 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  Fun  {
<. B ,  D >. } )
9 dmsnopg 4812 . . . . . 6  |-  ( C  e.  X  ->  dom  {
<. A ,  C >. }  =  { A }
)
102, 9syl 14 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  dom  {
<. A ,  C >. }  =  { A }
)
11 dmsnopg 4812 . . . . . 6  |-  ( D  e.  Y  ->  dom  {
<. B ,  D >. }  =  { B }
)
126, 11syl 14 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  dom  {
<. B ,  D >. }  =  { B }
)
1310, 12ineq12d 3168 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  ( dom  { <. A ,  C >. }  i^i  dom  { <. B ,  D >. } )  =  ( { A }  i^i  { B } ) )
14 disjsn2 3455 . . . . 5  |-  ( A  =/=  B  ->  ( { A }  i^i  { B } )  =  (/) )
15143ad2ant3 961 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  ( { A }  i^i  { B } )  =  (/) )
1613, 15eqtrd 2113 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  ( dom  { <. A ,  C >. }  i^i  dom  { <. B ,  D >. } )  =  (/) )
17 funun 4964 . . 3  |-  ( ( ( Fun  { <. A ,  C >. }  /\  Fun  { <. B ,  D >. } )  /\  ( dom  { <. A ,  C >. }  i^i  dom  { <. B ,  D >. } )  =  (/) )  ->  Fun  ( { <. A ,  C >. }  u.  { <. B ,  D >. } ) )
184, 8, 16, 17syl21anc 1168 . 2  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  Fun  ( { <. A ,  C >. }  u.  { <. B ,  D >. } ) )
19 df-pr 3405 . . 3  |-  { <. A ,  C >. ,  <. B ,  D >. }  =  ( { <. A ,  C >. }  u.  { <. B ,  D >. } )
2019funeqi 4942 . 2  |-  ( Fun 
{ <. A ,  C >. ,  <. B ,  D >. }  <->  Fun  ( { <. A ,  C >. }  u.  {
<. B ,  D >. } ) )
2118, 20sylibr 132 1  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  Fun  {
<. A ,  C >. , 
<. B ,  D >. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 919    = wceq 1284    e. wcel 1433    =/= wne 2245    u. cun 2971    i^i cin 2972   (/)c0 3251   {csn 3398   {cpr 3399   <.cop 3401   dom cdm 4363   Fun wfun 4916
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-fun 4924
This theorem is referenced by:  funtpg  4970  funpr  4971  fnprg  4974
  Copyright terms: Public domain W3C validator