| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzo1fzo0n0 | Unicode version | ||
| Description: An integer between 1 and an upper bound of a half-open integer range is not 0 and between 0 and the upper bound of the half-open integer range. (Contributed by Alexander van der Vekens, 21-Mar-2018.) |
| Ref | Expression |
|---|---|
| fzo1fzo0n0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzo2 9160 |
. . 3
| |
| 2 | elnnuz 8655 |
. . . . . . 7
| |
| 3 | nnnn0 8295 |
. . . . . . . . . . 11
| |
| 4 | 3 | adantr 270 |
. . . . . . . . . 10
|
| 5 | 4 | adantr 270 |
. . . . . . . . 9
|
| 6 | nngt0 8064 |
. . . . . . . . . . 11
| |
| 7 | 0red 7120 |
. . . . . . . . . . . . . . 15
| |
| 8 | nnre 8046 |
. . . . . . . . . . . . . . . 16
| |
| 9 | 8 | adantl 271 |
. . . . . . . . . . . . . . 15
|
| 10 | zre 8355 |
. . . . . . . . . . . . . . . 16
| |
| 11 | 10 | adantr 270 |
. . . . . . . . . . . . . . 15
|
| 12 | lttr 7185 |
. . . . . . . . . . . . . . 15
| |
| 13 | 7, 9, 11, 12 | syl3anc 1169 |
. . . . . . . . . . . . . 14
|
| 14 | elnnz 8361 |
. . . . . . . . . . . . . . . 16
| |
| 15 | 14 | simplbi2 377 |
. . . . . . . . . . . . . . 15
|
| 16 | 15 | adantr 270 |
. . . . . . . . . . . . . 14
|
| 17 | 13, 16 | syld 44 |
. . . . . . . . . . . . 13
|
| 18 | 17 | exp4b 359 |
. . . . . . . . . . . 12
|
| 19 | 18 | com13 79 |
. . . . . . . . . . 11
|
| 20 | 6, 19 | mpcom 36 |
. . . . . . . . . 10
|
| 21 | 20 | imp31 252 |
. . . . . . . . 9
|
| 22 | simpr 108 |
. . . . . . . . 9
| |
| 23 | 5, 21, 22 | 3jca 1118 |
. . . . . . . 8
|
| 24 | 23 | exp31 356 |
. . . . . . 7
|
| 25 | 2, 24 | sylbir 133 |
. . . . . 6
|
| 26 | 25 | 3imp 1132 |
. . . . 5
|
| 27 | elfzo0 9191 |
. . . . 5
| |
| 28 | 26, 27 | sylibr 132 |
. . . 4
|
| 29 | nnne0 8067 |
. . . . . 6
| |
| 30 | 2, 29 | sylbir 133 |
. . . . 5
|
| 31 | 30 | 3ad2ant1 959 |
. . . 4
|
| 32 | 28, 31 | jca 300 |
. . 3
|
| 33 | 1, 32 | sylbi 119 |
. 2
|
| 34 | elnnne0 8302 |
. . . . . 6
| |
| 35 | nnge1 8062 |
. . . . . 6
| |
| 36 | 34, 35 | sylbir 133 |
. . . . 5
|
| 37 | 36 | 3ad2antl1 1100 |
. . . 4
|
| 38 | simpl3 943 |
. . . 4
| |
| 39 | nn0z 8371 |
. . . . . . . . 9
| |
| 40 | 39 | adantr 270 |
. . . . . . . 8
|
| 41 | 1zzd 8378 |
. . . . . . . 8
| |
| 42 | nnz 8370 |
. . . . . . . . 9
| |
| 43 | 42 | adantl 271 |
. . . . . . . 8
|
| 44 | 40, 41, 43 | 3jca 1118 |
. . . . . . 7
|
| 45 | 44 | 3adant3 958 |
. . . . . 6
|
| 46 | 45 | adantr 270 |
. . . . 5
|
| 47 | elfzo 9159 |
. . . . 5
| |
| 48 | 46, 47 | syl 14 |
. . . 4
|
| 49 | 37, 38, 48 | mpbir2and 885 |
. . 3
|
| 50 | 27, 49 | sylanb 278 |
. 2
|
| 51 | 33, 50 | impbii 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-ltadd 7092 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-inn 8040 df-n0 8289 df-z 8352 df-uz 8620 df-fz 9030 df-fzo 9153 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |