ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  icodiamlt Unicode version

Theorem icodiamlt 10066
Description: Two elements in a half-open interval have separation strictly less than the difference between the endpoints. (Contributed by Stefan O'Rear, 12-Sep-2014.)
Assertion
Ref Expression
icodiamlt  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,) B
)  /\  D  e.  ( A [,) B ) ) )  ->  ( abs `  ( C  -  D ) )  < 
( B  -  A
) )

Proof of Theorem icodiamlt
StepHypRef Expression
1 rexr 7164 . . . 4  |-  ( B  e.  RR  ->  B  e.  RR* )
2 elico2 8960 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( C  e.  ( A [,) B )  <-> 
( C  e.  RR  /\  A  <_  C  /\  C  <  B ) ) )
3 elico2 8960 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( D  e.  ( A [,) B )  <-> 
( D  e.  RR  /\  A  <_  D  /\  D  <  B ) ) )
42, 3anbi12d 456 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( ( C  e.  ( A [,) B
)  /\  D  e.  ( A [,) B ) )  <->  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) ) )
54biimpd 142 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( ( C  e.  ( A [,) B
)  /\  D  e.  ( A [,) B ) )  ->  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) ) )
61, 5sylan2 280 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( C  e.  ( A [,) B
)  /\  D  e.  ( A [,) B ) )  ->  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) ) )
7 simplr 496 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  B  e.  RR )
87recnd 7147 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  B  e.  CC )
9 simpll 495 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  A  e.  RR )
109recnd 7147 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  A  e.  CC )
118, 10negsubdi2d 7435 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  -u ( B  -  A )  =  ( A  -  B ) )
129, 7resubcld 7485 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  ( A  -  B )  e.  RR )
13 simprl1 983 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  C  e.  RR )
1413, 7resubcld 7485 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  ( C  -  B )  e.  RR )
15 simprr1 986 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  D  e.  RR )
1613, 15resubcld 7485 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  ( C  -  D )  e.  RR )
17 simprl2 984 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  A  <_  C
)
189, 13, 7, 17lesub1dd 7661 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  ( A  -  B )  <_  ( C  -  B )
)
19 simprr3 988 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  D  <  B
)
2015, 7, 13, 19ltsub2dd 7658 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  ( C  -  B )  <  ( C  -  D )
)
2112, 14, 16, 18, 20lelttrd 7234 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  ( A  -  B )  <  ( C  -  D )
)
2211, 21eqbrtrd 3805 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  -u ( B  -  A )  <  ( C  -  D )
)
237, 15resubcld 7485 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  ( B  -  D )  e.  RR )
247, 9resubcld 7485 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  ( B  -  A )  e.  RR )
25 simprl3 985 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  C  <  B
)
2613, 7, 15, 25ltsub1dd 7657 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  ( C  -  D )  <  ( B  -  D )
)
27 simprr2 987 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  A  <_  D
)
289, 15, 7, 27lesub2dd 7662 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  ( B  -  D )  <_  ( B  -  A )
)
2916, 23, 24, 26, 28ltletrd 7527 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  ( C  -  D )  <  ( B  -  A )
)
3016, 24absltd 10060 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  ( ( abs `  ( C  -  D
) )  <  ( B  -  A )  <->  (
-u ( B  -  A )  <  ( C  -  D )  /\  ( C  -  D
)  <  ( B  -  A ) ) ) )
3122, 29, 30mpbir2and 885 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  ( abs `  ( C  -  D )
)  <  ( B  -  A ) )
3231ex 113 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) )  -> 
( abs `  ( C  -  D )
)  <  ( B  -  A ) ) )
336, 32syld 44 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( C  e.  ( A [,) B
)  /\  D  e.  ( A [,) B ) )  ->  ( abs `  ( C  -  D
) )  <  ( B  -  A )
) )
3433imp 122 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,) B
)  /\  D  e.  ( A [,) B ) ) )  ->  ( abs `  ( C  -  D ) )  < 
( B  -  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 919    e. wcel 1433   class class class wbr 3785   ` cfv 4922  (class class class)co 5532   RRcr 6980   RR*cxr 7152    < clt 7153    <_ cle 7154    - cmin 7279   -ucneg 7280   [,)cico 8913   abscabs 9883
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-rp 8735  df-ico 8917  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator