ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intfracq Unicode version

Theorem intfracq 9322
Description: Decompose a rational number, expressed as a ratio, into integer and fractional parts. The fractional part has a tighter bound than that of intqfrac2 9321. (Contributed by NM, 16-Aug-2008.)
Hypotheses
Ref Expression
intfracq.1  |-  Z  =  ( |_ `  ( M  /  N ) )
intfracq.2  |-  F  =  ( ( M  /  N )  -  Z
)
Assertion
Ref Expression
intfracq  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( 0  <_  F  /\  F  <_  ( ( N  -  1 )  /  N )  /\  ( M  /  N
)  =  ( Z  +  F ) ) )

Proof of Theorem intfracq
StepHypRef Expression
1 znq 8709 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  /  N
)  e.  QQ )
2 intfracq.1 . . . . 5  |-  Z  =  ( |_ `  ( M  /  N ) )
3 intfracq.2 . . . . 5  |-  F  =  ( ( M  /  N )  -  Z
)
42, 3intqfrac2 9321 . . . 4  |-  ( ( M  /  N )  e.  QQ  ->  (
0  <_  F  /\  F  <  1  /\  ( M  /  N )  =  ( Z  +  F
) ) )
51, 4syl 14 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( 0  <_  F  /\  F  <  1  /\  ( M  /  N
)  =  ( Z  +  F ) ) )
65simp1d 950 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  0  <_  F )
7 qfraclt1 9282 . . . . . . 7  |-  ( ( M  /  N )  e.  QQ  ->  (
( M  /  N
)  -  ( |_
`  ( M  /  N ) ) )  <  1 )
81, 7syl 14 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  /  N )  -  ( |_ `  ( M  /  N ) ) )  <  1 )
92oveq2i 5543 . . . . . . . 8  |-  ( ( M  /  N )  -  Z )  =  ( ( M  /  N )  -  ( |_ `  ( M  /  N ) ) )
103, 9eqtri 2101 . . . . . . 7  |-  F  =  ( ( M  /  N )  -  ( |_ `  ( M  /  N ) ) )
1110a1i 9 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  F  =  ( ( M  /  N )  -  ( |_ `  ( M  /  N
) ) ) )
12 simpr 108 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  e.  NN )
1312nncnd 8053 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  e.  CC )
1412nnap0d 8084 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N #  0 )
1513, 14dividapd 7874 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  /  N
)  =  1 )
168, 11, 153brtr4d 3815 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  F  <  ( N  /  N ) )
17 qre 8710 . . . . . . . . 9  |-  ( ( M  /  N )  e.  QQ  ->  ( M  /  N )  e.  RR )
181, 17syl 14 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  /  N
)  e.  RR )
191flqcld 9279 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( |_ `  ( M  /  N ) )  e.  ZZ )
202, 19syl5eqel 2165 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  Z  e.  ZZ )
2120zred 8469 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  Z  e.  RR )
2218, 21resubcld 7485 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  /  N )  -  Z
)  e.  RR )
233, 22syl5eqel 2165 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  F  e.  RR )
24 nnre 8046 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  RR )
2524adantl 271 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  e.  RR )
26 nngt0 8064 . . . . . . . 8  |-  ( N  e.  NN  ->  0  <  N )
2724, 26jca 300 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  e.  RR  /\  0  <  N ) )
2827adantl 271 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  e.  RR  /\  0  <  N ) )
29 ltmuldiv2 7953 . . . . . 6  |-  ( ( F  e.  RR  /\  N  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( ( N  x.  F )  <  N  <->  F  <  ( N  /  N ) ) )
3023, 25, 28, 29syl3anc 1169 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( N  x.  F )  <  N  <->  F  <  ( N  /  N ) ) )
3116, 30mpbird 165 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  F
)  <  N )
323oveq2i 5543 . . . . . . 7  |-  ( N  x.  F )  =  ( N  x.  (
( M  /  N
)  -  Z ) )
3318recnd 7147 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  /  N
)  e.  CC )
3420zcnd 8470 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  Z  e.  CC )
3513, 33, 34subdid 7518 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  (
( M  /  N
)  -  Z ) )  =  ( ( N  x.  ( M  /  N ) )  -  ( N  x.  Z ) ) )
3632, 35syl5eq 2125 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  F
)  =  ( ( N  x.  ( M  /  N ) )  -  ( N  x.  Z ) ) )
37 zcn 8356 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  CC )
3837adantr 270 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  M  e.  CC )
3938, 13, 14divcanap2d 7879 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  ( M  /  N ) )  =  M )
40 simpl 107 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  M  e.  ZZ )
4139, 40eqeltrd 2155 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  ( M  /  N ) )  e.  ZZ )
42 nnz 8370 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  ZZ )
4342adantl 271 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  e.  ZZ )
4443, 20zmulcld 8475 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  Z
)  e.  ZZ )
4541, 44zsubcld 8474 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( N  x.  ( M  /  N
) )  -  ( N  x.  Z )
)  e.  ZZ )
4636, 45eqeltrd 2155 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  F
)  e.  ZZ )
47 zltlem1 8408 . . . . 5  |-  ( ( ( N  x.  F
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( N  x.  F )  <  N  <->  ( N  x.  F )  <_  ( N  - 
1 ) ) )
4846, 43, 47syl2anc 403 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( N  x.  F )  <  N  <->  ( N  x.  F )  <_  ( N  - 
1 ) ) )
4931, 48mpbid 145 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  F
)  <_  ( N  -  1 ) )
50 peano2rem 7375 . . . . . 6  |-  ( N  e.  RR  ->  ( N  -  1 )  e.  RR )
5124, 50syl 14 . . . . 5  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  RR )
5251adantl 271 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  -  1 )  e.  RR )
53 lemuldiv2 7960 . . . 4  |-  ( ( F  e.  RR  /\  ( N  -  1
)  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  ->  ( ( N  x.  F )  <_  ( N  -  1 )  <->  F  <_  ( ( N  -  1 )  /  N ) ) )
5423, 52, 28, 53syl3anc 1169 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( N  x.  F )  <_  ( N  -  1 )  <-> 
F  <_  ( ( N  -  1 )  /  N ) ) )
5549, 54mpbid 145 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  F  <_  ( ( N  -  1 )  /  N ) )
565simp3d 952 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  /  N
)  =  ( Z  +  F ) )
576, 55, 563jca 1118 1  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( 0  <_  F  /\  F  <_  ( ( N  -  1 )  /  N )  /\  ( M  /  N
)  =  ( Z  +  F ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 919    = wceq 1284    e. wcel 1433   class class class wbr 3785   ` cfv 4922  (class class class)co 5532   CCcc 6979   RRcr 6980   0cc0 6981   1c1 6982    + caddc 6984    x. cmul 6986    < clt 7153    <_ cle 7154    - cmin 7279    / cdiv 7760   NNcn 8039   ZZcz 8351   QQcq 8704   |_cfl 9272
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-n0 8289  df-z 8352  df-q 8705  df-rp 8735  df-fl 9274
This theorem is referenced by:  flqdiv  9323
  Copyright terms: Public domain W3C validator