| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iss | Unicode version | ||
| Description: A subclass of the identity function is the identity function restricted to its domain. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| iss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 2993 |
. . . . . . 7
| |
| 2 | vex 2604 |
. . . . . . . . 9
| |
| 3 | vex 2604 |
. . . . . . . . 9
| |
| 4 | 2, 3 | opeldm 4556 |
. . . . . . . 8
|
| 5 | 4 | a1i 9 |
. . . . . . 7
|
| 6 | 1, 5 | jcad 301 |
. . . . . 6
|
| 7 | df-br 3786 |
. . . . . . . . 9
| |
| 8 | 3 | ideq 4506 |
. . . . . . . . 9
|
| 9 | 7, 8 | bitr3i 184 |
. . . . . . . 8
|
| 10 | 2 | eldm2 4551 |
. . . . . . . . . 10
|
| 11 | opeq2 3571 |
. . . . . . . . . . . . . . 15
| |
| 12 | 11 | eleq1d 2147 |
. . . . . . . . . . . . . 14
|
| 13 | 12 | biimprcd 158 |
. . . . . . . . . . . . 13
|
| 14 | 9, 13 | syl5bi 150 |
. . . . . . . . . . . 12
|
| 15 | 1, 14 | sylcom 28 |
. . . . . . . . . . 11
|
| 16 | 15 | exlimdv 1740 |
. . . . . . . . . 10
|
| 17 | 10, 16 | syl5bi 150 |
. . . . . . . . 9
|
| 18 | 12 | imbi2d 228 |
. . . . . . . . 9
|
| 19 | 17, 18 | syl5ibcom 153 |
. . . . . . . 8
|
| 20 | 9, 19 | syl5bi 150 |
. . . . . . 7
|
| 21 | 20 | impd 251 |
. . . . . 6
|
| 22 | 6, 21 | impbid 127 |
. . . . 5
|
| 23 | 3 | opelres 4635 |
. . . . 5
|
| 24 | 22, 23 | syl6bbr 196 |
. . . 4
|
| 25 | 24 | alrimivv 1796 |
. . 3
|
| 26 | reli 4483 |
. . . . 5
| |
| 27 | relss 4445 |
. . . . 5
| |
| 28 | 26, 27 | mpi 15 |
. . . 4
|
| 29 | relres 4657 |
. . . 4
| |
| 30 | eqrel 4447 |
. . . 4
| |
| 31 | 28, 29, 30 | sylancl 404 |
. . 3
|
| 32 | 25, 31 | mpbird 165 |
. 2
|
| 33 | resss 4653 |
. . 3
| |
| 34 | sseq1 3020 |
. . 3
| |
| 35 | 33, 34 | mpbiri 166 |
. 2
|
| 36 | 32, 35 | impbii 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-dm 4373 df-res 4375 |
| This theorem is referenced by: funcocnv2 5171 |
| Copyright terms: Public domain | W3C validator |