ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltsrprg Unicode version

Theorem ltsrprg 6924
Description: Ordering of signed reals in terms of positive reals. (Contributed by Jim Kingdon, 2-Jan-2019.)
Assertion
Ref Expression
ltsrprg  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( [ <. A ,  B >. ]  ~R  <R  [ <. C ,  D >. ]  ~R  <->  ( A  +P.  D )  <P  ( B  +P.  C ) ) )

Proof of Theorem ltsrprg
Dummy variables  x  y  z  w  v  u  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enrex 6914 . 2  |-  ~R  e.  _V
2 enrer 6912 . 2  |-  ~R  Er  ( P.  X.  P. )
3 df-nr 6904 . 2  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
4 df-ltr 6907 . 2  |-  <R  =  { <. x ,  y
>.  |  ( (
x  e.  R.  /\  y  e.  R. )  /\  E. z E. w E. v E. u ( ( x  =  [ <. z ,  w >. ]  ~R  /\  y  =  [ <. v ,  u >. ]  ~R  )  /\  ( z  +P.  u
)  <P  ( w  +P.  v ) ) ) }
5 enreceq 6913 . . . . 5  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  =  [ <. A ,  B >. ]  ~R  <->  ( z  +P.  B )  =  ( w  +P.  A ) ) )
6 enreceq 6913 . . . . . 6  |-  ( ( ( v  e.  P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( [ <. v ,  u >. ]  ~R  =  [ <. C ,  D >. ]  ~R  <->  ( v  +P.  D )  =  ( u  +P.  C ) ) )
7 eqcom 2083 . . . . . 6  |-  ( ( v  +P.  D )  =  ( u  +P.  C )  <->  ( u  +P.  C )  =  ( v  +P.  D ) )
86, 7syl6bb 194 . . . . 5  |-  ( ( ( v  e.  P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( [ <. v ,  u >. ]  ~R  =  [ <. C ,  D >. ]  ~R  <->  ( u  +P.  C )  =  ( v  +P. 
D ) ) )
95, 8bi2anan9 570 . . . 4  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( [
<. z ,  w >. ]  ~R  =  [ <. A ,  B >. ]  ~R  /\ 
[ <. v ,  u >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  <->  ( (
z  +P.  B )  =  ( w  +P.  A )  /\  ( u  +P.  C )  =  ( v  +P.  D
) ) ) )
10 oveq12 5541 . . . . . . 7  |-  ( ( ( z  +P.  B
)  =  ( w  +P.  A )  /\  ( u  +P.  C )  =  ( v  +P. 
D ) )  -> 
( ( z  +P. 
B )  +P.  (
u  +P.  C )
)  =  ( ( w  +P.  A )  +P.  ( v  +P. 
D ) ) )
1110adantl 271 . . . . . 6  |-  ( ( ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  /\  ( ( z  +P.  B )  =  ( w  +P.  A
)  /\  ( u  +P.  C )  =  ( v  +P.  D ) ) )  ->  (
( z  +P.  B
)  +P.  ( u  +P.  C ) )  =  ( ( w  +P.  A )  +P.  ( v  +P.  D ) ) )
12 simprlr 504 . . . . . . . . . . 11  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  u  e.  P. )
13 simplrr 502 . . . . . . . . . . 11  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  B  e.  P. )
14 addcomprg 6768 . . . . . . . . . . . 12  |-  ( ( u  e.  P.  /\  B  e.  P. )  ->  ( u  +P.  B
)  =  ( B  +P.  u ) )
1514oveq1d 5547 . . . . . . . . . . 11  |-  ( ( u  e.  P.  /\  B  e.  P. )  ->  ( ( u  +P.  B )  +P.  C )  =  ( ( B  +P.  u )  +P. 
C ) )
1612, 13, 15syl2anc 403 . . . . . . . . . 10  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( u  +P.  B )  +P. 
C )  =  ( ( B  +P.  u
)  +P.  C )
)
17 simprrl 505 . . . . . . . . . . 11  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  C  e.  P. )
18 addassprg 6769 . . . . . . . . . . 11  |-  ( ( u  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( u  +P.  B
)  +P.  C )  =  ( u  +P.  ( B  +P.  C ) ) )
1912, 13, 17, 18syl3anc 1169 . . . . . . . . . 10  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( u  +P.  B )  +P. 
C )  =  ( u  +P.  ( B  +P.  C ) ) )
20 addassprg 6769 . . . . . . . . . . 11  |-  ( ( B  e.  P.  /\  u  e.  P.  /\  C  e.  P. )  ->  (
( B  +P.  u
)  +P.  C )  =  ( B  +P.  ( u  +P.  C ) ) )
2113, 12, 17, 20syl3anc 1169 . . . . . . . . . 10  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( B  +P.  u )  +P. 
C )  =  ( B  +P.  ( u  +P.  C ) ) )
2216, 19, 213eqtr3d 2121 . . . . . . . . 9  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( u  +P.  ( B  +P.  C ) )  =  ( B  +P.  ( u  +P.  C ) ) )
2322oveq2d 5548 . . . . . . . 8  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( z  +P.  ( u  +P.  ( B  +P.  C ) ) )  =  ( z  +P.  ( B  +P.  ( u  +P.  C ) ) ) )
24 simplll 499 . . . . . . . . 9  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  z  e.  P. )
25 addclpr 6727 . . . . . . . . . . . . 13  |-  ( ( w  e.  P.  /\  v  e.  P. )  ->  ( w  +P.  v
)  e.  P. )
2625ad2ant2lr 493 . . . . . . . . . . . 12  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( w  +P.  v )  e.  P. )
27 addclpr 6727 . . . . . . . . . . . . 13  |-  ( ( B  e.  P.  /\  C  e.  P. )  ->  ( B  +P.  C
)  e.  P. )
2827ad2ant2lr 493 . . . . . . . . . . . 12  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( B  +P.  C )  e.  P. )
2926, 28anim12ci 332 . . . . . . . . . . 11  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  (
v  e.  P.  /\  u  e.  P. )
)  /\  ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( B  +P.  C )  e. 
P.  /\  ( w  +P.  v )  e.  P. ) )
3029an4s 552 . . . . . . . . . 10  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( B  +P.  C )  e. 
P.  /\  ( w  +P.  v )  e.  P. ) )
3130simpld 110 . . . . . . . . 9  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( B  +P.  C )  e.  P. )
32 addassprg 6769 . . . . . . . . 9  |-  ( ( z  e.  P.  /\  u  e.  P.  /\  ( B  +P.  C )  e. 
P. )  ->  (
( z  +P.  u
)  +P.  ( B  +P.  C ) )  =  ( z  +P.  (
u  +P.  ( B  +P.  C ) ) ) )
3324, 12, 31, 32syl3anc 1169 . . . . . . . 8  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( z  +P.  u )  +P.  ( B  +P.  C
) )  =  ( z  +P.  ( u  +P.  ( B  +P.  C ) ) ) )
34 addclpr 6727 . . . . . . . . . 10  |-  ( ( u  e.  P.  /\  C  e.  P. )  ->  ( u  +P.  C
)  e.  P. )
3512, 17, 34syl2anc 403 . . . . . . . . 9  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( u  +P.  C )  e.  P. )
36 addassprg 6769 . . . . . . . . 9  |-  ( ( z  e.  P.  /\  B  e.  P.  /\  (
u  +P.  C )  e.  P. )  ->  (
( z  +P.  B
)  +P.  ( u  +P.  C ) )  =  ( z  +P.  ( B  +P.  ( u  +P.  C ) ) ) )
3724, 13, 35, 36syl3anc 1169 . . . . . . . 8  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( z  +P.  B )  +P.  ( u  +P.  C
) )  =  ( z  +P.  ( B  +P.  ( u  +P.  C ) ) ) )
3823, 33, 373eqtr4d 2123 . . . . . . 7  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( z  +P.  u )  +P.  ( B  +P.  C
) )  =  ( ( z  +P.  B
)  +P.  ( u  +P.  C ) ) )
3938adantr 270 . . . . . 6  |-  ( ( ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  /\  ( ( z  +P.  B )  =  ( w  +P.  A
)  /\  ( u  +P.  C )  =  ( v  +P.  D ) ) )  ->  (
( z  +P.  u
)  +P.  ( B  +P.  C ) )  =  ( ( z  +P. 
B )  +P.  (
u  +P.  C )
) )
40 simprll 503 . . . . . . . . . . . 12  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  v  e.  P. )
41 simplrl 501 . . . . . . . . . . . 12  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  A  e.  P. )
42 addcomprg 6768 . . . . . . . . . . . 12  |-  ( ( v  e.  P.  /\  A  e.  P. )  ->  ( v  +P.  A
)  =  ( A  +P.  v ) )
4340, 41, 42syl2anc 403 . . . . . . . . . . 11  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( v  +P. 
A )  =  ( A  +P.  v ) )
4443oveq1d 5547 . . . . . . . . . 10  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( v  +P.  A )  +P. 
D )  =  ( ( A  +P.  v
)  +P.  D )
)
45 simprrr 506 . . . . . . . . . . 11  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  D  e.  P. )
46 addassprg 6769 . . . . . . . . . . 11  |-  ( ( v  e.  P.  /\  A  e.  P.  /\  D  e.  P. )  ->  (
( v  +P.  A
)  +P.  D )  =  ( v  +P.  ( A  +P.  D
) ) )
4740, 41, 45, 46syl3anc 1169 . . . . . . . . . 10  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( v  +P.  A )  +P. 
D )  =  ( v  +P.  ( A  +P.  D ) ) )
48 addassprg 6769 . . . . . . . . . . 11  |-  ( ( A  e.  P.  /\  v  e.  P.  /\  D  e.  P. )  ->  (
( A  +P.  v
)  +P.  D )  =  ( A  +P.  ( v  +P.  D
) ) )
4941, 40, 45, 48syl3anc 1169 . . . . . . . . . 10  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( A  +P.  v )  +P. 
D )  =  ( A  +P.  ( v  +P.  D ) ) )
5044, 47, 493eqtr3d 2121 . . . . . . . . 9  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( v  +P.  ( A  +P.  D
) )  =  ( A  +P.  ( v  +P.  D ) ) )
5150oveq2d 5548 . . . . . . . 8  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( w  +P.  ( v  +P.  ( A  +P.  D ) ) )  =  ( w  +P.  ( A  +P.  ( v  +P.  D
) ) ) )
52 simpllr 500 . . . . . . . . 9  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  w  e.  P. )
53 addclpr 6727 . . . . . . . . . 10  |-  ( ( A  e.  P.  /\  D  e.  P. )  ->  ( A  +P.  D
)  e.  P. )
5441, 45, 53syl2anc 403 . . . . . . . . 9  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( A  +P.  D )  e.  P. )
55 addassprg 6769 . . . . . . . . 9  |-  ( ( w  e.  P.  /\  v  e.  P.  /\  ( A  +P.  D )  e. 
P. )  ->  (
( w  +P.  v
)  +P.  ( A  +P.  D ) )  =  ( w  +P.  (
v  +P.  ( A  +P.  D ) ) ) )
5652, 40, 54, 55syl3anc 1169 . . . . . . . 8  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( w  +P.  v )  +P.  ( A  +P.  D
) )  =  ( w  +P.  ( v  +P.  ( A  +P.  D ) ) ) )
57 addclpr 6727 . . . . . . . . . 10  |-  ( ( v  e.  P.  /\  D  e.  P. )  ->  ( v  +P.  D
)  e.  P. )
5840, 45, 57syl2anc 403 . . . . . . . . 9  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( v  +P. 
D )  e.  P. )
59 addassprg 6769 . . . . . . . . 9  |-  ( ( w  e.  P.  /\  A  e.  P.  /\  (
v  +P.  D )  e.  P. )  ->  (
( w  +P.  A
)  +P.  ( v  +P.  D ) )  =  ( w  +P.  ( A  +P.  ( v  +P. 
D ) ) ) )
6052, 41, 58, 59syl3anc 1169 . . . . . . . 8  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( w  +P.  A )  +P.  ( v  +P.  D
) )  =  ( w  +P.  ( A  +P.  ( v  +P. 
D ) ) ) )
6151, 56, 603eqtr4d 2123 . . . . . . 7  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( w  +P.  v )  +P.  ( A  +P.  D
) )  =  ( ( w  +P.  A
)  +P.  ( v  +P.  D ) ) )
6261adantr 270 . . . . . 6  |-  ( ( ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  /\  ( ( z  +P.  B )  =  ( w  +P.  A
)  /\  ( u  +P.  C )  =  ( v  +P.  D ) ) )  ->  (
( w  +P.  v
)  +P.  ( A  +P.  D ) )  =  ( ( w  +P.  A )  +P.  ( v  +P.  D ) ) )
6311, 39, 623eqtr4d 2123 . . . . 5  |-  ( ( ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  /\  ( ( z  +P.  B )  =  ( w  +P.  A
)  /\  ( u  +P.  C )  =  ( v  +P.  D ) ) )  ->  (
( z  +P.  u
)  +P.  ( B  +P.  C ) )  =  ( ( w  +P.  v )  +P.  ( A  +P.  D ) ) )
6463ex 113 . . . 4  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( ( z  +P.  B )  =  ( w  +P.  A )  /\  ( u  +P.  C )  =  ( v  +P.  D
) )  ->  (
( z  +P.  u
)  +P.  ( B  +P.  C ) )  =  ( ( w  +P.  v )  +P.  ( A  +P.  D ) ) ) )
659, 64sylbid 148 . . 3  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( [
<. z ,  w >. ]  ~R  =  [ <. A ,  B >. ]  ~R  /\ 
[ <. v ,  u >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  ->  (
( z  +P.  u
)  +P.  ( B  +P.  C ) )  =  ( ( w  +P.  v )  +P.  ( A  +P.  D ) ) ) )
66 ltaprg 6809 . . . . 5  |-  ( ( x  e.  P.  /\  y  e.  P.  /\  f  e.  P. )  ->  (
x  <P  y  <->  ( f  +P.  x )  <P  (
f  +P.  y )
) )
6766adantl 271 . . . 4  |-  ( ( ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  /\  ( x  e. 
P.  /\  y  e.  P.  /\  f  e.  P. ) )  ->  (
x  <P  y  <->  ( f  +P.  x )  <P  (
f  +P.  y )
) )
68 addclpr 6727 . . . . 5  |-  ( ( z  e.  P.  /\  u  e.  P. )  ->  ( z  +P.  u
)  e.  P. )
6924, 12, 68syl2anc 403 . . . 4  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( z  +P.  u )  e.  P. )
7030simprd 112 . . . 4  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( w  +P.  v )  e.  P. )
71 addcomprg 6768 . . . . 5  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( x  +P.  y
)  =  ( y  +P.  x ) )
7271adantl 271 . . . 4  |-  ( ( ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  /\  ( x  e. 
P.  /\  y  e.  P. ) )  ->  (
x  +P.  y )  =  ( y  +P.  x ) )
7367, 69, 31, 70, 72, 54caovord3d 5691 . . 3  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( ( z  +P.  u )  +P.  ( B  +P.  C ) )  =  ( ( w  +P.  v
)  +P.  ( A  +P.  D ) )  -> 
( ( z  +P.  u )  <P  (
w  +P.  v )  <->  ( A  +P.  D ) 
<P  ( B  +P.  C
) ) ) )
7465, 73syld 44 . 2  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( [
<. z ,  w >. ]  ~R  =  [ <. A ,  B >. ]  ~R  /\ 
[ <. v ,  u >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  ->  (
( z  +P.  u
)  <P  ( w  +P.  v )  <->  ( A  +P.  D )  <P  ( B  +P.  C ) ) ) )
751, 2, 3, 4, 74brecop 6219 1  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( [ <. A ,  B >. ]  ~R  <R  [ <. C ,  D >. ]  ~R  <->  ( A  +P.  D )  <P  ( B  +P.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 919    = wceq 1284    e. wcel 1433   <.cop 3401   class class class wbr 3785  (class class class)co 5532   [cec 6127   P.cnp 6481    +P. cpp 6483    <P cltp 6485    ~R cer 6486   R.cnr 6487    <R cltr 6493
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-iplp 6658  df-iltp 6660  df-enr 6903  df-nr 6904  df-ltr 6907
This theorem is referenced by:  gt0srpr  6925  lttrsr  6939  ltposr  6940  ltsosr  6941  0lt1sr  6942  ltasrg  6947  aptisr  6955  mulextsr1  6957  archsr  6958  prsrlt  6963  pitoregt0  7017
  Copyright terms: Public domain W3C validator