ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulextsr1 Unicode version

Theorem mulextsr1 6957
Description: Strong extensionality of multiplication of signed reals. (Contributed by Jim Kingdon, 18-Feb-2020.)
Assertion
Ref Expression
mulextsr1  |-  ( ( A  e.  R.  /\  B  e.  R.  /\  C  e.  R. )  ->  (
( A  .R  C
)  <R  ( B  .R  C )  ->  ( A  <R  B  \/  B  <R  A ) ) )

Proof of Theorem mulextsr1
Dummy variables  u  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 6904 . 2  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 oveq1 5539 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. x ,  y >. ]  ~R  .R 
[ <. u ,  v
>. ]  ~R  )  =  ( A  .R  [ <. u ,  v >. ]  ~R  ) )
32breq1d 3795 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( [ <. x ,  y >. ]  ~R  .R 
[ <. u ,  v
>. ]  ~R  )  <R 
( [ <. z ,  w >. ]  ~R  .R  [
<. u ,  v >. ]  ~R  )  <->  ( A  .R  [ <. u ,  v
>. ]  ~R  )  <R 
( [ <. z ,  w >. ]  ~R  .R  [
<. u ,  v >. ]  ~R  ) ) )
4 breq1 3788 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  A  <R  [
<. z ,  w >. ]  ~R  ) )
5 breq2 3789 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. z ,  w >. ]  ~R  <R  [
<. x ,  y >. ]  ~R  <->  [ <. z ,  w >. ]  ~R  <R  A ) )
64, 5orbi12d 739 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  ) 
<->  ( A  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  A ) ) )
73, 6imbi12d 232 . 2  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( ( [
<. x ,  y >. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  <R  ( [ <. z ,  w >. ]  ~R  .R 
[ <. u ,  v
>. ]  ~R  )  -> 
( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  ) )  <->  ( ( A  .R  [ <. u ,  v >. ]  ~R  )  <R  ( [ <. z ,  w >. ]  ~R  .R 
[ <. u ,  v
>. ]  ~R  )  -> 
( A  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  A ) ) ) )
8 oveq1 5539 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( [ <. z ,  w >. ]  ~R  .R  [
<. u ,  v >. ]  ~R  )  =  ( B  .R  [ <. u ,  v >. ]  ~R  ) )
98breq2d 3797 . . 3  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( ( A  .R  [
<. u ,  v >. ]  ~R  )  <R  ( [ <. z ,  w >. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  <->  ( A  .R  [ <. u ,  v
>. ]  ~R  )  <R 
( B  .R  [ <. u ,  v >. ]  ~R  ) ) )
10 breq2 3789 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( A  <R  [ <. z ,  w >. ]  ~R  <->  A 
<R  B ) )
11 breq1 3788 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( [ <. z ,  w >. ]  ~R  <R  A  <-> 
B  <R  A ) )
1210, 11orbi12d 739 . . 3  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( ( A  <R  [
<. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  A )  <->  ( A  <R  B  \/  B  <R  A ) ) )
139, 12imbi12d 232 . 2  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( ( ( A  .R  [ <. u ,  v >. ]  ~R  )  <R  ( [ <. z ,  w >. ]  ~R  .R 
[ <. u ,  v
>. ]  ~R  )  -> 
( A  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  A ) )  <->  ( ( A  .R  [ <. u ,  v >. ]  ~R  )  <R  ( B  .R  [
<. u ,  v >. ]  ~R  )  ->  ( A  <R  B  \/  B  <R  A ) ) ) )
14 oveq2 5540 . . . 4  |-  ( [
<. u ,  v >. ]  ~R  =  C  -> 
( A  .R  [ <. u ,  v >. ]  ~R  )  =  ( A  .R  C ) )
15 oveq2 5540 . . . 4  |-  ( [
<. u ,  v >. ]  ~R  =  C  -> 
( B  .R  [ <. u ,  v >. ]  ~R  )  =  ( B  .R  C ) )
1614, 15breq12d 3798 . . 3  |-  ( [
<. u ,  v >. ]  ~R  =  C  -> 
( ( A  .R  [
<. u ,  v >. ]  ~R  )  <R  ( B  .R  [ <. u ,  v >. ]  ~R  ) 
<->  ( A  .R  C
)  <R  ( B  .R  C ) ) )
1716imbi1d 229 . 2  |-  ( [
<. u ,  v >. ]  ~R  =  C  -> 
( ( ( A  .R  [ <. u ,  v >. ]  ~R  )  <R  ( B  .R  [
<. u ,  v >. ]  ~R  )  ->  ( A  <R  B  \/  B  <R  A ) )  <->  ( ( A  .R  C )  <R 
( B  .R  C
)  ->  ( A  <R  B  \/  B  <R  A ) ) ) )
18 mulextsr1lem 6956 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( (
( ( x  .P.  u )  +P.  (
y  .P.  v )
)  +P.  ( (
z  .P.  v )  +P.  ( w  .P.  u
) ) )  <P 
( ( ( x  .P.  v )  +P.  ( y  .P.  u
) )  +P.  (
( z  .P.  u
)  +P.  ( w  .P.  v ) ) )  ->  ( ( x  +P.  w )  <P 
( y  +P.  z
)  \/  ( z  +P.  y )  <P 
( w  +P.  x
) ) ) )
19 mulsrpr 6923 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  =  [ <. (
( x  .P.  u
)  +P.  ( y  .P.  v ) ) ,  ( ( x  .P.  v )  +P.  (
y  .P.  u )
) >. ]  ~R  )
20193adant2 957 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  =  [ <. (
( x  .P.  u
)  +P.  ( y  .P.  v ) ) ,  ( ( x  .P.  v )  +P.  (
y  .P.  u )
) >. ]  ~R  )
21 mulsrpr 6923 . . . . . 6  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  =  [ <. (
( z  .P.  u
)  +P.  ( w  .P.  v ) ) ,  ( ( z  .P.  v )  +P.  (
w  .P.  u )
) >. ]  ~R  )
22213adant1 956 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  =  [ <. (
( z  .P.  u
)  +P.  ( w  .P.  v ) ) ,  ( ( z  .P.  v )  +P.  (
w  .P.  u )
) >. ]  ~R  )
2320, 22breq12d 3798 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( ( [ <. x ,  y
>. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  <R  ( [ <. z ,  w >. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  <->  [ <. (
( x  .P.  u
)  +P.  ( y  .P.  v ) ) ,  ( ( x  .P.  v )  +P.  (
y  .P.  u )
) >. ]  ~R  <R  [
<. ( ( z  .P.  u )  +P.  (
w  .P.  v )
) ,  ( ( z  .P.  v )  +P.  ( w  .P.  u ) ) >. ]  ~R  ) )
24 simp1l 962 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  x  e.  P. )
25 simp3l 966 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  u  e.  P. )
26 mulclpr 6762 . . . . . . 7  |-  ( ( x  e.  P.  /\  u  e.  P. )  ->  ( x  .P.  u
)  e.  P. )
2724, 25, 26syl2anc 403 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( x  .P.  u )  e.  P. )
28 simp1r 963 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  y  e.  P. )
29 simp3r 967 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  v  e.  P. )
30 mulclpr 6762 . . . . . . 7  |-  ( ( y  e.  P.  /\  v  e.  P. )  ->  ( y  .P.  v
)  e.  P. )
3128, 29, 30syl2anc 403 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( y  .P.  v )  e.  P. )
32 addclpr 6727 . . . . . 6  |-  ( ( ( x  .P.  u
)  e.  P.  /\  ( y  .P.  v
)  e.  P. )  ->  ( ( x  .P.  u )  +P.  (
y  .P.  v )
)  e.  P. )
3327, 31, 32syl2anc 403 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( (
x  .P.  u )  +P.  ( y  .P.  v
) )  e.  P. )
34 mulclpr 6762 . . . . . . 7  |-  ( ( x  e.  P.  /\  v  e.  P. )  ->  ( x  .P.  v
)  e.  P. )
3524, 29, 34syl2anc 403 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( x  .P.  v )  e.  P. )
36 mulclpr 6762 . . . . . . 7  |-  ( ( y  e.  P.  /\  u  e.  P. )  ->  ( y  .P.  u
)  e.  P. )
3728, 25, 36syl2anc 403 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( y  .P.  u )  e.  P. )
38 addclpr 6727 . . . . . 6  |-  ( ( ( x  .P.  v
)  e.  P.  /\  ( y  .P.  u
)  e.  P. )  ->  ( ( x  .P.  v )  +P.  (
y  .P.  u )
)  e.  P. )
3935, 37, 38syl2anc 403 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( (
x  .P.  v )  +P.  ( y  .P.  u
) )  e.  P. )
40 simp2l 964 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  z  e.  P. )
41 mulclpr 6762 . . . . . . 7  |-  ( ( z  e.  P.  /\  u  e.  P. )  ->  ( z  .P.  u
)  e.  P. )
4240, 25, 41syl2anc 403 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( z  .P.  u )  e.  P. )
43 simp2r 965 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  w  e.  P. )
44 mulclpr 6762 . . . . . . 7  |-  ( ( w  e.  P.  /\  v  e.  P. )  ->  ( w  .P.  v
)  e.  P. )
4543, 29, 44syl2anc 403 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( w  .P.  v )  e.  P. )
46 addclpr 6727 . . . . . 6  |-  ( ( ( z  .P.  u
)  e.  P.  /\  ( w  .P.  v )  e.  P. )  -> 
( ( z  .P.  u )  +P.  (
w  .P.  v )
)  e.  P. )
4742, 45, 46syl2anc 403 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( (
z  .P.  u )  +P.  ( w  .P.  v
) )  e.  P. )
48 mulclpr 6762 . . . . . . 7  |-  ( ( z  e.  P.  /\  v  e.  P. )  ->  ( z  .P.  v
)  e.  P. )
4940, 29, 48syl2anc 403 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( z  .P.  v )  e.  P. )
50 mulclpr 6762 . . . . . . 7  |-  ( ( w  e.  P.  /\  u  e.  P. )  ->  ( w  .P.  u
)  e.  P. )
5143, 25, 50syl2anc 403 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( w  .P.  u )  e.  P. )
52 addclpr 6727 . . . . . 6  |-  ( ( ( z  .P.  v
)  e.  P.  /\  ( w  .P.  u )  e.  P. )  -> 
( ( z  .P.  v )  +P.  (
w  .P.  u )
)  e.  P. )
5349, 51, 52syl2anc 403 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( (
z  .P.  v )  +P.  ( w  .P.  u
) )  e.  P. )
54 ltsrprg 6924 . . . . 5  |-  ( ( ( ( ( x  .P.  u )  +P.  ( y  .P.  v
) )  e.  P.  /\  ( ( x  .P.  v )  +P.  (
y  .P.  u )
)  e.  P. )  /\  ( ( ( z  .P.  u )  +P.  ( w  .P.  v
) )  e.  P.  /\  ( ( z  .P.  v )  +P.  (
w  .P.  u )
)  e.  P. )
)  ->  ( [ <. ( ( x  .P.  u )  +P.  (
y  .P.  v )
) ,  ( ( x  .P.  v )  +P.  ( y  .P.  u ) ) >. ]  ~R  <R  [ <. (
( z  .P.  u
)  +P.  ( w  .P.  v ) ) ,  ( ( z  .P.  v )  +P.  (
w  .P.  u )
) >. ]  ~R  <->  ( (
( x  .P.  u
)  +P.  ( y  .P.  v ) )  +P.  ( ( z  .P.  v )  +P.  (
w  .P.  u )
) )  <P  (
( ( x  .P.  v )  +P.  (
y  .P.  u )
)  +P.  ( (
z  .P.  u )  +P.  ( w  .P.  v
) ) ) ) )
5533, 39, 47, 53, 54syl22anc 1170 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( [ <. ( ( x  .P.  u )  +P.  (
y  .P.  v )
) ,  ( ( x  .P.  v )  +P.  ( y  .P.  u ) ) >. ]  ~R  <R  [ <. (
( z  .P.  u
)  +P.  ( w  .P.  v ) ) ,  ( ( z  .P.  v )  +P.  (
w  .P.  u )
) >. ]  ~R  <->  ( (
( x  .P.  u
)  +P.  ( y  .P.  v ) )  +P.  ( ( z  .P.  v )  +P.  (
w  .P.  u )
) )  <P  (
( ( x  .P.  v )  +P.  (
y  .P.  u )
)  +P.  ( (
z  .P.  u )  +P.  ( w  .P.  v
) ) ) ) )
5623, 55bitrd 186 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( ( [ <. x ,  y
>. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  <R  ( [ <. z ,  w >. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  <->  ( (
( x  .P.  u
)  +P.  ( y  .P.  v ) )  +P.  ( ( z  .P.  v )  +P.  (
w  .P.  u )
) )  <P  (
( ( x  .P.  v )  +P.  (
y  .P.  u )
)  +P.  ( (
z  .P.  u )  +P.  ( w  .P.  v
) ) ) ) )
57 ltsrprg 6924 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  ( x  +P.  w )  <P  (
y  +P.  z )
) )
58573adant3 958 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  ( x  +P.  w )  <P  (
y  +P.  z )
) )
59 ltsrprg 6924 . . . . . 6  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  <->  ( z  +P.  y ) 
<P  ( w  +P.  x
) ) )
6059ancoms 264 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  <->  ( z  +P.  y ) 
<P  ( w  +P.  x
) ) )
61603adant3 958 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  <->  ( z  +P.  y ) 
<P  ( w  +P.  x
) ) )
6258, 61orbi12d 739 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( ( [ <. x ,  y
>. ]  ~R  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  ) 
<->  ( ( x  +P.  w )  <P  (
y  +P.  z )  \/  ( z  +P.  y
)  <P  ( w  +P.  x ) ) ) )
6318, 56, 623imtr4d 201 . 2  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( ( [ <. x ,  y
>. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  <R  ( [ <. z ,  w >. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  ->  ( [ <. x ,  y
>. ]  ~R  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  ) ) )
641, 7, 13, 17, 633ecoptocl 6218 1  |-  ( ( A  e.  R.  /\  B  e.  R.  /\  C  e.  R. )  ->  (
( A  .R  C
)  <R  ( B  .R  C )  ->  ( A  <R  B  \/  B  <R  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661    /\ w3a 919    = wceq 1284    e. wcel 1433   <.cop 3401   class class class wbr 3785  (class class class)co 5532   [cec 6127   P.cnp 6481    +P. cpp 6483    .P. cmp 6484    <P cltp 6485    ~R cer 6486   R.cnr 6487    .R cmr 6492    <R cltr 6493
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-i1p 6657  df-iplp 6658  df-imp 6659  df-iltp 6660  df-enr 6903  df-nr 6904  df-mr 6906  df-ltr 6907
This theorem is referenced by:  axpre-mulext  7054
  Copyright terms: Public domain W3C validator