| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltxr | Unicode version | ||
| Description: The 'less than' binary relation on the set of extended reals. Definition 12-3.1 of [Gleason] p. 173. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| ltxr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq12 3790 |
. . . . 5
| |
| 2 | df-3an 921 |
. . . . . 6
| |
| 3 | 2 | opabbii 3845 |
. . . . 5
|
| 4 | 1, 3 | brab2ga 4433 |
. . . 4
|
| 5 | 4 | a1i 9 |
. . 3
|
| 6 | brun 3831 |
. . . 4
| |
| 7 | brxp 4393 |
. . . . . . 7
| |
| 8 | elun 3113 |
. . . . . . . . . . 11
| |
| 9 | orcom 679 |
. . . . . . . . . . 11
| |
| 10 | 8, 9 | bitri 182 |
. . . . . . . . . 10
|
| 11 | elsng 3413 |
. . . . . . . . . . 11
| |
| 12 | 11 | orbi1d 737 |
. . . . . . . . . 10
|
| 13 | 10, 12 | syl5bb 190 |
. . . . . . . . 9
|
| 14 | elsng 3413 |
. . . . . . . . 9
| |
| 15 | 13, 14 | bi2anan9 570 |
. . . . . . . 8
|
| 16 | andir 765 |
. . . . . . . 8
| |
| 17 | 15, 16 | syl6bb 194 |
. . . . . . 7
|
| 18 | 7, 17 | syl5bb 190 |
. . . . . 6
|
| 19 | brxp 4393 |
. . . . . . 7
| |
| 20 | 11 | anbi1d 452 |
. . . . . . . 8
|
| 21 | 20 | adantr 270 |
. . . . . . 7
|
| 22 | 19, 21 | syl5bb 190 |
. . . . . 6
|
| 23 | 18, 22 | orbi12d 739 |
. . . . 5
|
| 24 | orass 716 |
. . . . 5
| |
| 25 | 23, 24 | syl6bb 194 |
. . . 4
|
| 26 | 6, 25 | syl5bb 190 |
. . 3
|
| 27 | 5, 26 | orbi12d 739 |
. 2
|
| 28 | df-ltxr 7158 |
. . . 4
| |
| 29 | 28 | breqi 3791 |
. . 3
|
| 30 | brun 3831 |
. . 3
| |
| 31 | 29, 30 | bitri 182 |
. 2
|
| 32 | orass 716 |
. 2
| |
| 33 | 27, 31, 32 | 3bitr4g 221 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-xp 4369 df-ltxr 7158 |
| This theorem is referenced by: xrltnr 8855 ltpnf 8856 mnflt 8858 mnfltpnf 8860 pnfnlt 8862 nltmnf 8863 |
| Copyright terms: Public domain | W3C validator |