ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcn2 Unicode version

Theorem mulcn2 10151
Description: Complex number multiplication is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
mulcn2  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  x.  v
)  -  ( B  x.  C ) ) )  <  A ) )
Distinct variable groups:    v, u, y, z, A    u, B, v, y, z    u, C, v, y, z

Proof of Theorem mulcn2
StepHypRef Expression
1 rphalfcl 8761 . . . 4  |-  ( A  e.  RR+  ->  ( A  /  2 )  e.  RR+ )
213ad2ant1 959 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  /  2 )  e.  RR+ )
3 abscl 9937 . . . . . 6  |-  ( C  e.  CC  ->  ( abs `  C )  e.  RR )
433ad2ant3 961 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  ( abs `  C )  e.  RR )
5 abscl 9937 . . . . . . . . . 10  |-  ( B  e.  CC  ->  ( abs `  B )  e.  RR )
653ad2ant2 960 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  ( abs `  B )  e.  RR )
7 1re 7118 . . . . . . . . 9  |-  1  e.  RR
8 readdcl 7099 . . . . . . . . 9  |-  ( ( ( abs `  B
)  e.  RR  /\  1  e.  RR )  ->  ( ( abs `  B
)  +  1 )  e.  RR )
96, 7, 8sylancl 404 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( abs `  B
)  +  1 )  e.  RR )
10 absge0 9946 . . . . . . . . . 10  |-  ( B  e.  CC  ->  0  <_  ( abs `  B
) )
11 0lt1 7236 . . . . . . . . . . 11  |-  0  <  1
12 addgegt0 7553 . . . . . . . . . . . 12  |-  ( ( ( ( abs `  B
)  e.  RR  /\  1  e.  RR )  /\  ( 0  <_  ( abs `  B )  /\  0  <  1 ) )  ->  0  <  (
( abs `  B
)  +  1 ) )
1312an4s 552 . . . . . . . . . . 11  |-  ( ( ( ( abs `  B
)  e.  RR  /\  0  <_  ( abs `  B
) )  /\  (
1  e.  RR  /\  0  <  1 ) )  ->  0  <  (
( abs `  B
)  +  1 ) )
147, 11, 13mpanr12 429 . . . . . . . . . 10  |-  ( ( ( abs `  B
)  e.  RR  /\  0  <_  ( abs `  B
) )  ->  0  <  ( ( abs `  B
)  +  1 ) )
155, 10, 14syl2anc 403 . . . . . . . . 9  |-  ( B  e.  CC  ->  0  <  ( ( abs `  B
)  +  1 ) )
16153ad2ant2 960 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  0  <  ( ( abs `  B
)  +  1 ) )
179, 16elrpd 8771 . . . . . . 7  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( abs `  B
)  +  1 )  e.  RR+ )
182, 17rpdivcld 8791 . . . . . 6  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  /  2
)  /  ( ( abs `  B )  +  1 ) )  e.  RR+ )
1918rpred 8773 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  /  2
)  /  ( ( abs `  B )  +  1 ) )  e.  RR )
204, 19readdcld 7148 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) )  e.  RR )
21 absge0 9946 . . . . . 6  |-  ( C  e.  CC  ->  0  <_  ( abs `  C
) )
22213ad2ant3 961 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  0  <_  ( abs `  C
) )
23 elrp 8736 . . . . . 6  |-  ( ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) )  e.  RR+  <->  ( ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) )  e.  RR  /\  0  <  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )
24 addgegt0 7553 . . . . . . 7  |-  ( ( ( ( abs `  C
)  e.  RR  /\  ( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) )  e.  RR )  /\  ( 0  <_ 
( abs `  C
)  /\  0  <  ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) )  ->  0  <  ( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )
2524an4s 552 . . . . . 6  |-  ( ( ( ( abs `  C
)  e.  RR  /\  0  <_  ( abs `  C
) )  /\  (
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) )  e.  RR  /\  0  <  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) )  -> 
0  <  ( ( abs `  C )  +  ( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) ) )
2623, 25sylan2b 281 . . . . 5  |-  ( ( ( ( abs `  C
)  e.  RR  /\  0  <_  ( abs `  C
) )  /\  (
( A  /  2
)  /  ( ( abs `  B )  +  1 ) )  e.  RR+ )  ->  0  <  ( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )
274, 22, 18, 26syl21anc 1168 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  0  <  ( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )
2820, 27elrpd 8771 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) )  e.  RR+ )
292, 28rpdivcld 8791 . 2  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  /  2
)  /  ( ( abs `  C )  +  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) )  e.  RR+ )
30 simprl 497 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  u  e.  CC )
31 simpl2 942 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  B  e.  CC )
3230, 31subcld 7419 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( u  -  B )  e.  CC )
3332abscld 10067 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( u  -  B
) )  e.  RR )
342adantr 270 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( A  /  2 )  e.  RR+ )
3534rpred 8773 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( A  /  2 )  e.  RR )
3628adantr 270 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  C )  +  ( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) )  e.  RR+ )
3733, 35, 36ltmuldivd 8821 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
u  -  B ) )  x.  ( ( abs `  C )  +  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) )  < 
( A  /  2
)  <->  ( abs `  (
u  -  B ) )  <  ( ( A  /  2 )  /  ( ( abs `  C )  +  ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) ) ) )
38 simprr 498 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  v  e.  CC )
39 simpl3 943 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  C  e.  CC )
4038, 39abs2difd 10083 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  v )  -  ( abs `  C ) )  <_  ( abs `  ( v  -  C
) ) )
4138abscld 10067 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  v )  e.  RR )
424adantr 270 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  C )  e.  RR )
4341, 42resubcld 7485 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  v )  -  ( abs `  C ) )  e.  RR )
4438, 39subcld 7419 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( v  -  C )  e.  CC )
4544abscld 10067 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( v  -  C
) )  e.  RR )
4619adantr 270 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) )  e.  RR )
47 lelttr 7199 . . . . . . . . . . . . . 14  |-  ( ( ( ( abs `  v
)  -  ( abs `  C ) )  e.  RR  /\  ( abs `  ( v  -  C
) )  e.  RR  /\  ( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) )  e.  RR )  ->  ( ( ( ( abs `  v
)  -  ( abs `  C ) )  <_ 
( abs `  (
v  -  C ) )  /\  ( abs `  ( v  -  C
) )  <  (
( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) )  ->  ( ( abs `  v )  -  ( abs `  C ) )  <  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )
4843, 45, 46, 47syl3anc 1169 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( ( abs `  v
)  -  ( abs `  C ) )  <_ 
( abs `  (
v  -  C ) )  /\  ( abs `  ( v  -  C
) )  <  (
( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) )  ->  ( ( abs `  v )  -  ( abs `  C ) )  <  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )
4940, 48mpand 419 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( v  -  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) )  ->  ( ( abs `  v )  -  ( abs `  C ) )  <  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )
5041, 42, 46ltsubadd2d 7643 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  v
)  -  ( abs `  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) )  <->  ( abs `  v
)  <  ( ( abs `  C )  +  ( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) ) ) )
5149, 50sylibd 147 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( v  -  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) )  ->  ( abs `  v )  <  (
( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) ) )
5220adantr 270 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  C )  +  ( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) )  e.  RR )
53 ltle 7198 . . . . . . . . . . . 12  |-  ( ( ( abs `  v
)  e.  RR  /\  ( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) )  e.  RR )  ->  (
( abs `  v
)  <  ( ( abs `  C )  +  ( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) )  ->  ( abs `  v )  <_ 
( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) ) )
5441, 52, 53syl2anc 403 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  v )  < 
( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) )  -> 
( abs `  v
)  <_  ( ( abs `  C )  +  ( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) ) ) )
5551, 54syld 44 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( v  -  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) )  ->  ( abs `  v )  <_  (
( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) ) )
5632absge0d 10070 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  0  <_  ( abs `  ( u  -  B ) ) )
57 lemul2a 7937 . . . . . . . . . . . 12  |-  ( ( ( ( abs `  v
)  e.  RR  /\  ( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) )  e.  RR  /\  ( ( abs `  ( u  -  B ) )  e.  RR  /\  0  <_  ( abs `  (
u  -  B ) ) ) )  /\  ( abs `  v )  <_  ( ( abs `  C )  +  ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) )  ->  (
( abs `  (
u  -  B ) )  x.  ( abs `  v ) )  <_ 
( ( abs `  (
u  -  B ) )  x.  ( ( abs `  C )  +  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) ) )
5857ex 113 . . . . . . . . . . 11  |-  ( ( ( abs `  v
)  e.  RR  /\  ( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) )  e.  RR  /\  ( ( abs `  ( u  -  B ) )  e.  RR  /\  0  <_  ( abs `  (
u  -  B ) ) ) )  -> 
( ( abs `  v
)  <_  ( ( abs `  C )  +  ( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) )  ->  (
( abs `  (
u  -  B ) )  x.  ( abs `  v ) )  <_ 
( ( abs `  (
u  -  B ) )  x.  ( ( abs `  C )  +  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) ) ) )
5941, 52, 33, 56, 58syl112anc 1173 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  v )  <_ 
( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) )  -> 
( ( abs `  (
u  -  B ) )  x.  ( abs `  v ) )  <_ 
( ( abs `  (
u  -  B ) )  x.  ( ( abs `  C )  +  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) ) ) )
6033, 41remulcld 7149 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( u  -  B ) )  x.  ( abs `  v
) )  e.  RR )
6133, 52remulcld 7149 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( u  -  B ) )  x.  ( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  e.  RR )
62 lelttr 7199 . . . . . . . . . . . 12  |-  ( ( ( ( abs `  (
u  -  B ) )  x.  ( abs `  v ) )  e.  RR  /\  ( ( abs `  ( u  -  B ) )  x.  ( ( abs `  C )  +  ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) )  e.  RR  /\  ( A  /  2
)  e.  RR )  ->  ( ( ( ( abs `  (
u  -  B ) )  x.  ( abs `  v ) )  <_ 
( ( abs `  (
u  -  B ) )  x.  ( ( abs `  C )  +  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) )  /\  ( ( abs `  (
u  -  B ) )  x.  ( ( abs `  C )  +  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) )  < 
( A  /  2
) )  ->  (
( abs `  (
u  -  B ) )  x.  ( abs `  v ) )  < 
( A  /  2
) ) )
6360, 61, 35, 62syl3anc 1169 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( ( abs `  (
u  -  B ) )  x.  ( abs `  v ) )  <_ 
( ( abs `  (
u  -  B ) )  x.  ( ( abs `  C )  +  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) )  /\  ( ( abs `  (
u  -  B ) )  x.  ( ( abs `  C )  +  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) )  < 
( A  /  2
) )  ->  (
( abs `  (
u  -  B ) )  x.  ( abs `  v ) )  < 
( A  /  2
) ) )
6463expd 254 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
u  -  B ) )  x.  ( abs `  v ) )  <_ 
( ( abs `  (
u  -  B ) )  x.  ( ( abs `  C )  +  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) )  -> 
( ( ( abs `  ( u  -  B
) )  x.  (
( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  <  ( A  / 
2 )  ->  (
( abs `  (
u  -  B ) )  x.  ( abs `  v ) )  < 
( A  /  2
) ) ) )
6555, 59, 643syld 56 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( v  -  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) )  ->  ( (
( abs `  (
u  -  B ) )  x.  ( ( abs `  C )  +  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) )  < 
( A  /  2
)  ->  ( ( abs `  ( u  -  B ) )  x.  ( abs `  v
) )  <  ( A  /  2 ) ) ) )
6665com23 77 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
u  -  B ) )  x.  ( ( abs `  C )  +  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) )  < 
( A  /  2
)  ->  ( ( abs `  ( v  -  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) )  ->  ( ( abs `  ( u  -  B ) )  x.  ( abs `  v
) )  <  ( A  /  2 ) ) ) )
6737, 66sylbird 168 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( u  -  B ) )  < 
( ( A  / 
2 )  /  (
( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  ->  ( ( abs `  ( v  -  C
) )  <  (
( A  /  2
)  /  ( ( abs `  B )  +  1 ) )  ->  ( ( abs `  ( u  -  B
) )  x.  ( abs `  v ) )  <  ( A  / 
2 ) ) ) )
6867impd 251 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
u  -  B ) )  <  ( ( A  /  2 )  /  ( ( abs `  C )  +  ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  ( v  -  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) )  ->  (
( abs `  (
u  -  B ) )  x.  ( abs `  v ) )  < 
( A  /  2
) ) )
6932, 38absmuld 10080 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( ( u  -  B )  x.  v
) )  =  ( ( abs `  (
u  -  B ) )  x.  ( abs `  v ) ) )
7030, 31, 38subdird 7519 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
u  -  B )  x.  v )  =  ( ( u  x.  v )  -  ( B  x.  v )
) )
7170fveq2d 5202 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( ( u  -  B )  x.  v
) )  =  ( abs `  ( ( u  x.  v )  -  ( B  x.  v ) ) ) )
7269, 71eqtr3d 2115 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( u  -  B ) )  x.  ( abs `  v
) )  =  ( abs `  ( ( u  x.  v )  -  ( B  x.  v ) ) ) )
7372breq1d 3795 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
u  -  B ) )  x.  ( abs `  v ) )  < 
( A  /  2
)  <->  ( abs `  (
( u  x.  v
)  -  ( B  x.  v ) ) )  <  ( A  /  2 ) ) )
7468, 73sylibd 147 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
u  -  B ) )  <  ( ( A  /  2 )  /  ( ( abs `  C )  +  ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  ( v  -  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) )  ->  ( abs `  ( ( u  x.  v )  -  ( B  x.  v
) ) )  < 
( A  /  2
) ) )
7517adantr 270 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  B )  +  1 )  e.  RR+ )
7645, 35, 75ltmuldiv2d 8822 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( ( abs `  B
)  +  1 )  x.  ( abs `  (
v  -  C ) ) )  <  ( A  /  2 )  <->  ( abs `  ( v  -  C
) )  <  (
( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) )
7731, 38, 39subdid 7518 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( B  x.  ( v  -  C
) )  =  ( ( B  x.  v
)  -  ( B  x.  C ) ) )
7877fveq2d 5202 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( B  x.  (
v  -  C ) ) )  =  ( abs `  ( ( B  x.  v )  -  ( B  x.  C ) ) ) )
7931, 44absmuld 10080 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( B  x.  (
v  -  C ) ) )  =  ( ( abs `  B
)  x.  ( abs `  ( v  -  C
) ) ) )
8078, 79eqtr3d 2115 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( ( B  x.  v )  -  ( B  x.  C )
) )  =  ( ( abs `  B
)  x.  ( abs `  ( v  -  C
) ) ) )
8131abscld 10067 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  B )  e.  RR )
8281lep1d 8009 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  B )  <_  (
( abs `  B
)  +  1 ) )
839adantr 270 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  B )  +  1 )  e.  RR )
84 abscl 9937 . . . . . . . . . . . . 13  |-  ( ( v  -  C )  e.  CC  ->  ( abs `  ( v  -  C ) )  e.  RR )
85 absge0 9946 . . . . . . . . . . . . 13  |-  ( ( v  -  C )  e.  CC  ->  0  <_  ( abs `  (
v  -  C ) ) )
8684, 85jca 300 . . . . . . . . . . . 12  |-  ( ( v  -  C )  e.  CC  ->  (
( abs `  (
v  -  C ) )  e.  RR  /\  0  <_  ( abs `  (
v  -  C ) ) ) )
87 lemul1a 7936 . . . . . . . . . . . . 13  |-  ( ( ( ( abs `  B
)  e.  RR  /\  ( ( abs `  B
)  +  1 )  e.  RR  /\  (
( abs `  (
v  -  C ) )  e.  RR  /\  0  <_  ( abs `  (
v  -  C ) ) ) )  /\  ( abs `  B )  <_  ( ( abs `  B )  +  1 ) )  ->  (
( abs `  B
)  x.  ( abs `  ( v  -  C
) ) )  <_ 
( ( ( abs `  B )  +  1 )  x.  ( abs `  ( v  -  C
) ) ) )
8887ex 113 . . . . . . . . . . . 12  |-  ( ( ( abs `  B
)  e.  RR  /\  ( ( abs `  B
)  +  1 )  e.  RR  /\  (
( abs `  (
v  -  C ) )  e.  RR  /\  0  <_  ( abs `  (
v  -  C ) ) ) )  -> 
( ( abs `  B
)  <_  ( ( abs `  B )  +  1 )  ->  (
( abs `  B
)  x.  ( abs `  ( v  -  C
) ) )  <_ 
( ( ( abs `  B )  +  1 )  x.  ( abs `  ( v  -  C
) ) ) ) )
8986, 88syl3an3 1204 . . . . . . . . . . 11  |-  ( ( ( abs `  B
)  e.  RR  /\  ( ( abs `  B
)  +  1 )  e.  RR  /\  (
v  -  C )  e.  CC )  -> 
( ( abs `  B
)  <_  ( ( abs `  B )  +  1 )  ->  (
( abs `  B
)  x.  ( abs `  ( v  -  C
) ) )  <_ 
( ( ( abs `  B )  +  1 )  x.  ( abs `  ( v  -  C
) ) ) ) )
9081, 83, 44, 89syl3anc 1169 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  B )  <_ 
( ( abs `  B
)  +  1 )  ->  ( ( abs `  B )  x.  ( abs `  ( v  -  C ) ) )  <_  ( ( ( abs `  B )  +  1 )  x.  ( abs `  (
v  -  C ) ) ) ) )
9182, 90mpd 13 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  B )  x.  ( abs `  (
v  -  C ) ) )  <_  (
( ( abs `  B
)  +  1 )  x.  ( abs `  (
v  -  C ) ) ) )
9280, 91eqbrtrd 3805 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( ( B  x.  v )  -  ( B  x.  C )
) )  <_  (
( ( abs `  B
)  +  1 )  x.  ( abs `  (
v  -  C ) ) ) )
9331, 38mulcld 7139 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( B  x.  v )  e.  CC )
9431, 39mulcld 7139 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( B  x.  C )  e.  CC )
9593, 94subcld 7419 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( B  x.  v )  -  ( B  x.  C ) )  e.  CC )
9695abscld 10067 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( ( B  x.  v )  -  ( B  x.  C )
) )  e.  RR )
9783, 45remulcld 7149 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  B
)  +  1 )  x.  ( abs `  (
v  -  C ) ) )  e.  RR )
98 lelttr 7199 . . . . . . . . 9  |-  ( ( ( abs `  (
( B  x.  v
)  -  ( B  x.  C ) ) )  e.  RR  /\  ( ( ( abs `  B )  +  1 )  x.  ( abs `  ( v  -  C
) ) )  e.  RR  /\  ( A  /  2 )  e.  RR )  ->  (
( ( abs `  (
( B  x.  v
)  -  ( B  x.  C ) ) )  <_  ( (
( abs `  B
)  +  1 )  x.  ( abs `  (
v  -  C ) ) )  /\  (
( ( abs `  B
)  +  1 )  x.  ( abs `  (
v  -  C ) ) )  <  ( A  /  2 ) )  ->  ( abs `  (
( B  x.  v
)  -  ( B  x.  C ) ) )  <  ( A  /  2 ) ) )
9996, 97, 35, 98syl3anc 1169 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
( B  x.  v
)  -  ( B  x.  C ) ) )  <_  ( (
( abs `  B
)  +  1 )  x.  ( abs `  (
v  -  C ) ) )  /\  (
( ( abs `  B
)  +  1 )  x.  ( abs `  (
v  -  C ) ) )  <  ( A  /  2 ) )  ->  ( abs `  (
( B  x.  v
)  -  ( B  x.  C ) ) )  <  ( A  /  2 ) ) )
10092, 99mpand 419 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( ( abs `  B
)  +  1 )  x.  ( abs `  (
v  -  C ) ) )  <  ( A  /  2 )  -> 
( abs `  (
( B  x.  v
)  -  ( B  x.  C ) ) )  <  ( A  /  2 ) ) )
10176, 100sylbird 168 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( v  -  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) )  ->  ( abs `  ( ( B  x.  v )  -  ( B  x.  C )
) )  <  ( A  /  2 ) ) )
102101adantld 272 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
u  -  B ) )  <  ( ( A  /  2 )  /  ( ( abs `  C )  +  ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  ( v  -  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) )  ->  ( abs `  ( ( B  x.  v )  -  ( B  x.  C
) ) )  < 
( A  /  2
) ) )
10374, 102jcad 301 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
u  -  B ) )  <  ( ( A  /  2 )  /  ( ( abs `  C )  +  ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  ( v  -  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) )  ->  (
( abs `  (
( u  x.  v
)  -  ( B  x.  v ) ) )  <  ( A  /  2 )  /\  ( abs `  ( ( B  x.  v )  -  ( B  x.  C ) ) )  <  ( A  / 
2 ) ) ) )
104 mulcl 7100 . . . . . 6  |-  ( ( u  e.  CC  /\  v  e.  CC )  ->  ( u  x.  v
)  e.  CC )
105104adantl 271 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( u  x.  v )  e.  CC )
106 simpl1 941 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  A  e.  RR+ )
107106rpred 8773 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  A  e.  RR )
108 abs3lem 9997 . . . . 5  |-  ( ( ( ( u  x.  v )  e.  CC  /\  ( B  x.  C
)  e.  CC )  /\  ( ( B  x.  v )  e.  CC  /\  A  e.  RR ) )  -> 
( ( ( abs `  ( ( u  x.  v )  -  ( B  x.  v )
) )  <  ( A  /  2 )  /\  ( abs `  ( ( B  x.  v )  -  ( B  x.  C ) ) )  <  ( A  / 
2 ) )  -> 
( abs `  (
( u  x.  v
)  -  ( B  x.  C ) ) )  <  A ) )
109105, 94, 93, 107, 108syl22anc 1170 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
( u  x.  v
)  -  ( B  x.  v ) ) )  <  ( A  /  2 )  /\  ( abs `  ( ( B  x.  v )  -  ( B  x.  C ) ) )  <  ( A  / 
2 ) )  -> 
( abs `  (
( u  x.  v
)  -  ( B  x.  C ) ) )  <  A ) )
110103, 109syld 44 . . 3  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
u  -  B ) )  <  ( ( A  /  2 )  /  ( ( abs `  C )  +  ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  ( v  -  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) )  ->  ( abs `  ( ( u  x.  v )  -  ( B  x.  C
) ) )  < 
A ) )
111110ralrimivva 2443 . 2  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  ( ( A  /  2 )  / 
( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  (
v  -  C ) )  <  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) )  -> 
( abs `  (
( u  x.  v
)  -  ( B  x.  C ) ) )  <  A ) )
112 breq2 3789 . . . . . 6  |-  ( y  =  ( ( A  /  2 )  / 
( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  ->  ( ( abs `  ( u  -  B
) )  <  y  <->  ( abs `  ( u  -  B ) )  <  ( ( A  /  2 )  / 
( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) ) ) )
113112anbi1d 452 . . . . 5  |-  ( y  =  ( ( A  /  2 )  / 
( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  ->  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  < 
z )  <->  ( ( abs `  ( u  -  B ) )  < 
( ( A  / 
2 )  /  (
( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  (
v  -  C ) )  <  z ) ) )
114113imbi1d 229 . . . 4  |-  ( y  =  ( ( A  /  2 )  / 
( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  ->  ( ( ( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  x.  v
)  -  ( B  x.  C ) ) )  <  A )  <-> 
( ( ( abs `  ( u  -  B
) )  <  (
( A  /  2
)  /  ( ( abs `  C )  +  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) )  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  x.  v
)  -  ( B  x.  C ) ) )  <  A ) ) )
1151142ralbidv 2390 . . 3  |-  ( y  =  ( ( A  /  2 )  / 
( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  ->  ( A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  < 
z )  ->  ( abs `  ( ( u  x.  v )  -  ( B  x.  C
) ) )  < 
A )  <->  A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  ( ( A  /  2 )  / 
( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  (
v  -  C ) )  <  z )  ->  ( abs `  (
( u  x.  v
)  -  ( B  x.  C ) ) )  <  A ) ) )
116 breq2 3789 . . . . . 6  |-  ( z  =  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) )  ->  ( ( abs `  ( v  -  C ) )  < 
z  <->  ( abs `  (
v  -  C ) )  <  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )
117116anbi2d 451 . . . . 5  |-  ( z  =  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) )  ->  ( (
( abs `  (
u  -  B ) )  <  ( ( A  /  2 )  /  ( ( abs `  C )  +  ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  ( v  -  C ) )  < 
z )  <->  ( ( abs `  ( u  -  B ) )  < 
( ( A  / 
2 )  /  (
( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  (
v  -  C ) )  <  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) ) )
118117imbi1d 229 . . . 4  |-  ( z  =  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) )  ->  ( (
( ( abs `  (
u  -  B ) )  <  ( ( A  /  2 )  /  ( ( abs `  C )  +  ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  ( v  -  C ) )  < 
z )  ->  ( abs `  ( ( u  x.  v )  -  ( B  x.  C
) ) )  < 
A )  <->  ( (
( abs `  (
u  -  B ) )  <  ( ( A  /  2 )  /  ( ( abs `  C )  +  ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  ( v  -  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) )  ->  ( abs `  ( ( u  x.  v )  -  ( B  x.  C
) ) )  < 
A ) ) )
1191182ralbidv 2390 . . 3  |-  ( z  =  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) )  ->  ( A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  ( ( A  /  2 )  / 
( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  (
v  -  C ) )  <  z )  ->  ( abs `  (
( u  x.  v
)  -  ( B  x.  C ) ) )  <  A )  <->  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  ( ( A  /  2 )  /  ( ( abs `  C )  +  ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  ( v  -  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) )  ->  ( abs `  ( ( u  x.  v )  -  ( B  x.  C
) ) )  < 
A ) ) )
120115, 119rspc2ev 2715 . 2  |-  ( ( ( ( A  / 
2 )  /  (
( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  e.  RR+  /\  (
( A  /  2
)  /  ( ( abs `  B )  +  1 ) )  e.  RR+  /\  A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  ( ( A  /  2 )  / 
( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  (
v  -  C ) )  <  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) )  -> 
( abs `  (
( u  x.  v
)  -  ( B  x.  C ) ) )  <  A ) )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  x.  v
)  -  ( B  x.  C ) ) )  <  A ) )
12129, 18, 111, 120syl3anc 1169 1  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  x.  v
)  -  ( B  x.  C ) ) )  <  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 919    = wceq 1284    e. wcel 1433   A.wral 2348   E.wrex 2349   class class class wbr 3785   ` cfv 4922  (class class class)co 5532   CCcc 6979   RRcr 6980   0cc0 6981   1c1 6982    + caddc 6984    x. cmul 6986    < clt 7153    <_ cle 7154    - cmin 7279    / cdiv 7760   2c2 8089   RR+crp 8734   abscabs 9883
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-rp 8735  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885
This theorem is referenced by:  climmul  10165
  Copyright terms: Public domain W3C validator