ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0seqcvgd Unicode version

Theorem nn0seqcvgd 10423
Description: A strictly-decreasing nonnegative integer sequence with initial term  N reaches zero by the  N th term. Deduction version. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
nn0seqcvgd.1  |-  ( ph  ->  F : NN0 --> NN0 )
nn0seqcvgd.2  |-  ( ph  ->  N  =  ( F `
 0 ) )
nn0seqcvgd.3  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( F `  ( k  +  1 ) )  =/=  0  ->  ( F `  ( k  +  1 ) )  <  ( F `  k ) ) )
Assertion
Ref Expression
nn0seqcvgd  |-  ( ph  ->  ( F `  N
)  =  0 )
Distinct variable groups:    k, F    k, N    ph, k

Proof of Theorem nn0seqcvgd
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 nn0seqcvgd.2 . . . . . 6  |-  ( ph  ->  N  =  ( F `
 0 ) )
2 nn0seqcvgd.1 . . . . . . 7  |-  ( ph  ->  F : NN0 --> NN0 )
3 0nn0 8303 . . . . . . 7  |-  0  e.  NN0
4 ffvelrn 5321 . . . . . . 7  |-  ( ( F : NN0 --> NN0  /\  0  e.  NN0 )  -> 
( F `  0
)  e.  NN0 )
52, 3, 4sylancl 404 . . . . . 6  |-  ( ph  ->  ( F `  0
)  e.  NN0 )
61, 5eqeltrd 2155 . . . . 5  |-  ( ph  ->  N  e.  NN0 )
76nn0red 8342 . . . . . 6  |-  ( ph  ->  N  e.  RR )
87leidd 7615 . . . . 5  |-  ( ph  ->  N  <_  N )
9 fveq2 5198 . . . . . . . 8  |-  ( m  =  0  ->  ( F `  m )  =  ( F ` 
0 ) )
10 oveq2 5540 . . . . . . . 8  |-  ( m  =  0  ->  ( N  -  m )  =  ( N  - 
0 ) )
119, 10breq12d 3798 . . . . . . 7  |-  ( m  =  0  ->  (
( F `  m
)  <_  ( N  -  m )  <->  ( F `  0 )  <_ 
( N  -  0 ) ) )
1211imbi2d 228 . . . . . 6  |-  ( m  =  0  ->  (
( ph  ->  ( F `
 m )  <_ 
( N  -  m
) )  <->  ( ph  ->  ( F `  0
)  <_  ( N  -  0 ) ) ) )
13 fveq2 5198 . . . . . . . 8  |-  ( m  =  k  ->  ( F `  m )  =  ( F `  k ) )
14 oveq2 5540 . . . . . . . 8  |-  ( m  =  k  ->  ( N  -  m )  =  ( N  -  k ) )
1513, 14breq12d 3798 . . . . . . 7  |-  ( m  =  k  ->  (
( F `  m
)  <_  ( N  -  m )  <->  ( F `  k )  <_  ( N  -  k )
) )
1615imbi2d 228 . . . . . 6  |-  ( m  =  k  ->  (
( ph  ->  ( F `
 m )  <_ 
( N  -  m
) )  <->  ( ph  ->  ( F `  k
)  <_  ( N  -  k ) ) ) )
17 fveq2 5198 . . . . . . . 8  |-  ( m  =  ( k  +  1 )  ->  ( F `  m )  =  ( F `  ( k  +  1 ) ) )
18 oveq2 5540 . . . . . . . 8  |-  ( m  =  ( k  +  1 )  ->  ( N  -  m )  =  ( N  -  ( k  +  1 ) ) )
1917, 18breq12d 3798 . . . . . . 7  |-  ( m  =  ( k  +  1 )  ->  (
( F `  m
)  <_  ( N  -  m )  <->  ( F `  ( k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) )
2019imbi2d 228 . . . . . 6  |-  ( m  =  ( k  +  1 )  ->  (
( ph  ->  ( F `
 m )  <_ 
( N  -  m
) )  <->  ( ph  ->  ( F `  (
k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) ) )
21 fveq2 5198 . . . . . . . 8  |-  ( m  =  N  ->  ( F `  m )  =  ( F `  N ) )
22 oveq2 5540 . . . . . . . 8  |-  ( m  =  N  ->  ( N  -  m )  =  ( N  -  N ) )
2321, 22breq12d 3798 . . . . . . 7  |-  ( m  =  N  ->  (
( F `  m
)  <_  ( N  -  m )  <->  ( F `  N )  <_  ( N  -  N )
) )
2423imbi2d 228 . . . . . 6  |-  ( m  =  N  ->  (
( ph  ->  ( F `
 m )  <_ 
( N  -  m
) )  <->  ( ph  ->  ( F `  N
)  <_  ( N  -  N ) ) ) )
251, 8eqbrtrrd 3807 . . . . . . . 8  |-  ( ph  ->  ( F `  0
)  <_  N )
267recnd 7147 . . . . . . . . 9  |-  ( ph  ->  N  e.  CC )
2726subid1d 7408 . . . . . . . 8  |-  ( ph  ->  ( N  -  0 )  =  N )
2825, 27breqtrrd 3811 . . . . . . 7  |-  ( ph  ->  ( F `  0
)  <_  ( N  -  0 ) )
2928a1i 9 . . . . . 6  |-  ( N  e.  NN0  ->  ( ph  ->  ( F `  0
)  <_  ( N  -  0 ) ) )
30 nn0re 8297 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  ->  k  e.  RR )
31 posdif 7559 . . . . . . . . . . . . . . . . 17  |-  ( ( k  e.  RR  /\  N  e.  RR )  ->  ( k  <  N  <->  0  <  ( N  -  k ) ) )
3230, 7, 31syl2anr 284 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( k  <  N  <->  0  <  ( N  -  k )
) )
3332adantr 270 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  ( F `  ( k  +  1 ) )  =  0 )  -> 
( k  <  N  <->  0  <  ( N  -  k ) ) )
34 breq1 3788 . . . . . . . . . . . . . . . 16  |-  ( ( F `  ( k  +  1 ) )  =  0  ->  (
( F `  (
k  +  1 ) )  <  ( N  -  k )  <->  0  <  ( N  -  k ) ) )
3534adantl 271 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  ( F `  ( k  +  1 ) )  =  0 )  -> 
( ( F `  ( k  +  1 ) )  <  ( N  -  k )  <->  0  <  ( N  -  k ) ) )
36 peano2nn0 8328 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  NN0  ->  ( k  +  1 )  e. 
NN0 )
37 ffvelrn 5321 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( F : NN0 --> NN0  /\  ( k  +  1 )  e.  NN0 )  ->  ( F `  (
k  +  1 ) )  e.  NN0 )
382, 36, 37syl2an 283 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  ( k  +  1 ) )  e.  NN0 )
3938nn0zd 8467 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  ( k  +  1 ) )  e.  ZZ )
406nn0zd 8467 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  N  e.  ZZ )
41 nn0z 8371 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  k  e.  ZZ )
42 zsubcl 8392 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ZZ  /\  k  e.  ZZ )  ->  ( N  -  k
)  e.  ZZ )
4340, 41, 42syl2an 283 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( N  -  k )  e.  ZZ )
44 zltlem1 8408 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F `  (
k  +  1 ) )  e.  ZZ  /\  ( N  -  k
)  e.  ZZ )  ->  ( ( F `
 ( k  +  1 ) )  < 
( N  -  k
)  <->  ( F `  ( k  +  1 ) )  <_  (
( N  -  k
)  -  1 ) ) )
4539, 43, 44syl2anc 403 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( F `  ( k  +  1 ) )  <  ( N  -  k )  <->  ( F `  ( k  +  1 ) )  <_  (
( N  -  k
)  -  1 ) ) )
46 nn0cn 8298 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  k  e.  CC )
47 ax-1cn 7069 . . . . . . . . . . . . . . . . . . . 20  |-  1  e.  CC
48 subsub4 7341 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  CC  /\  k  e.  CC  /\  1  e.  CC )  ->  (
( N  -  k
)  -  1 )  =  ( N  -  ( k  +  1 ) ) )
4947, 48mp3an3 1257 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  CC  /\  k  e.  CC )  ->  ( ( N  -  k )  -  1 )  =  ( N  -  ( k  +  1 ) ) )
5026, 46, 49syl2an 283 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( N  -  k )  -  1 )  =  ( N  -  (
k  +  1 ) ) )
5150breq2d 3797 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( F `  ( k  +  1 ) )  <_  ( ( N  -  k )  - 
1 )  <->  ( F `  ( k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) )
5245, 51bitrd 186 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( F `  ( k  +  1 ) )  <  ( N  -  k )  <->  ( F `  ( k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) )
5352adantr 270 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  ( F `  ( k  +  1 ) )  =  0 )  -> 
( ( F `  ( k  +  1 ) )  <  ( N  -  k )  <->  ( F `  ( k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) )
5433, 35, 533bitr2d 214 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  ( F `  ( k  +  1 ) )  =  0 )  -> 
( k  <  N  <->  ( F `  ( k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) )
5554biimpa 290 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  NN0 )  /\  ( F `  ( k  +  1 ) )  =  0 )  /\  k  <  N )  -> 
( F `  (
k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) )
5655an32s 532 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  NN0 )  /\  k  <  N )  /\  ( F `  ( k  +  1 ) )  =  0 )  -> 
( F `  (
k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) )
5756a1d 22 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  NN0 )  /\  k  <  N )  /\  ( F `  ( k  +  1 ) )  =  0 )  -> 
( ( F `  k )  <_  ( N  -  k )  ->  ( F `  (
k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) )
58 nn0seqcvgd.3 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( F `  ( k  +  1 ) )  =/=  0  ->  ( F `  ( k  +  1 ) )  <  ( F `  k ) ) )
5938nn0red 8342 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  ( k  +  1 ) )  e.  RR )
602ffvelrnda 5323 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  e.  NN0 )
6160nn0red 8342 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  e.  RR )
6243zred 8469 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( N  -  k )  e.  RR )
63 ltletr 7200 . . . . . . . . . . . . . . . 16  |-  ( ( ( F `  (
k  +  1 ) )  e.  RR  /\  ( F `  k )  e.  RR  /\  ( N  -  k )  e.  RR )  ->  (
( ( F `  ( k  +  1 ) )  <  ( F `  k )  /\  ( F `  k
)  <_  ( N  -  k ) )  ->  ( F `  ( k  +  1 ) )  <  ( N  -  k )
) )
6459, 61, 62, 63syl3anc 1169 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( F `  (
k  +  1 ) )  <  ( F `
 k )  /\  ( F `  k )  <_  ( N  -  k ) )  -> 
( F `  (
k  +  1 ) )  <  ( N  -  k ) ) )
6564, 52sylibd 147 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( F `  (
k  +  1 ) )  <  ( F `
 k )  /\  ( F `  k )  <_  ( N  -  k ) )  -> 
( F `  (
k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) )
6658, 65syland 287 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( F `  (
k  +  1 ) )  =/=  0  /\  ( F `  k
)  <_  ( N  -  k ) )  ->  ( F `  ( k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) )
6766adantr 270 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <  N )  ->  (
( ( F `  ( k  +  1 ) )  =/=  0  /\  ( F `  k
)  <_  ( N  -  k ) )  ->  ( F `  ( k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) )
6867expdimp 255 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  NN0 )  /\  k  <  N )  /\  ( F `  ( k  +  1 ) )  =/=  0 )  -> 
( ( F `  k )  <_  ( N  -  k )  ->  ( F `  (
k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) )
6939adantr 270 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <  N )  ->  ( F `  ( k  +  1 ) )  e.  ZZ )
70 0zd 8363 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <  N )  ->  0  e.  ZZ )
71 zdceq 8423 . . . . . . . . . . . . 13  |-  ( ( ( F `  (
k  +  1 ) )  e.  ZZ  /\  0  e.  ZZ )  -> DECID  ( F `  ( k  +  1 ) )  =  0 )
7269, 70, 71syl2anc 403 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <  N )  -> DECID  ( F `  (
k  +  1 ) )  =  0 )
73 dcne 2256 . . . . . . . . . . . 12  |-  (DECID  ( F `
 ( k  +  1 ) )  =  0  <->  ( ( F `
 ( k  +  1 ) )  =  0  \/  ( F `
 ( k  +  1 ) )  =/=  0 ) )
7472, 73sylib 120 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <  N )  ->  (
( F `  (
k  +  1 ) )  =  0  \/  ( F `  (
k  +  1 ) )  =/=  0 ) )
7557, 68, 74mpjaodan 744 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <  N )  ->  (
( F `  k
)  <_  ( N  -  k )  -> 
( F `  (
k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) )
7675anasss 391 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  NN0  /\  k  < 
N ) )  -> 
( ( F `  k )  <_  ( N  -  k )  ->  ( F `  (
k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) )
7776expcom 114 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  k  <  N )  -> 
( ph  ->  ( ( F `  k )  <_  ( N  -  k )  ->  ( F `  ( k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) ) )
7877a2d 26 . . . . . . 7  |-  ( ( k  e.  NN0  /\  k  <  N )  -> 
( ( ph  ->  ( F `  k )  <_  ( N  -  k ) )  -> 
( ph  ->  ( F `
 ( k  +  1 ) )  <_ 
( N  -  (
k  +  1 ) ) ) ) )
79783adant1 956 . . . . . 6  |-  ( ( N  e.  NN0  /\  k  e.  NN0  /\  k  <  N )  ->  (
( ph  ->  ( F `
 k )  <_ 
( N  -  k
) )  ->  ( ph  ->  ( F `  ( k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) ) )
8012, 16, 20, 24, 29, 79fnn0ind 8463 . . . . 5  |-  ( ( N  e.  NN0  /\  N  e.  NN0  /\  N  <_  N )  ->  ( ph  ->  ( F `  N )  <_  ( N  -  N )
) )
816, 6, 8, 80syl3anc 1169 . . . 4  |-  ( ph  ->  ( ph  ->  ( F `  N )  <_  ( N  -  N
) ) )
8281pm2.43i 48 . . 3  |-  ( ph  ->  ( F `  N
)  <_  ( N  -  N ) )
8326subidd 7407 . . 3  |-  ( ph  ->  ( N  -  N
)  =  0 )
8482, 83breqtrd 3809 . 2  |-  ( ph  ->  ( F `  N
)  <_  0 )
852, 6ffvelrnd 5324 . . 3  |-  ( ph  ->  ( F `  N
)  e.  NN0 )
8685nn0ge0d 8344 . 2  |-  ( ph  ->  0  <_  ( F `  N ) )
8785nn0red 8342 . . 3  |-  ( ph  ->  ( F `  N
)  e.  RR )
88 0re 7119 . . 3  |-  0  e.  RR
89 letri3 7192 . . 3  |-  ( ( ( F `  N
)  e.  RR  /\  0  e.  RR )  ->  ( ( F `  N )  =  0  <-> 
( ( F `  N )  <_  0  /\  0  <_  ( F `
 N ) ) ) )
9087, 88, 89sylancl 404 . 2  |-  ( ph  ->  ( ( F `  N )  =  0  <-> 
( ( F `  N )  <_  0  /\  0  <_  ( F `
 N ) ) ) )
9184, 86, 90mpbir2and 885 1  |-  ( ph  ->  ( F `  N
)  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661  DECID wdc 775    = wceq 1284    e. wcel 1433    =/= wne 2245   class class class wbr 3785   -->wf 4918   ` cfv 4922  (class class class)co 5532   CCcc 6979   RRcr 6980   0cc0 6981   1c1 6982    + caddc 6984    < clt 7153    <_ cle 7154    - cmin 7279   NN0cn0 8288   ZZcz 8351
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352
This theorem is referenced by:  ialgcvg  10430
  Copyright terms: Public domain W3C validator