ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnaordi Unicode version

Theorem nnaordi 6104
Description: Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58, limited to natural numbers. (Contributed by NM, 3-Feb-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaordi  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( A  e.  B  ->  ( C  +o  A
)  e.  ( C  +o  B ) ) )

Proof of Theorem nnaordi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5540 . . . . . . . . 9  |-  ( x  =  C  ->  ( A  +o  x )  =  ( A  +o  C
) )
2 oveq2 5540 . . . . . . . . 9  |-  ( x  =  C  ->  ( B  +o  x )  =  ( B  +o  C
) )
31, 2eleq12d 2149 . . . . . . . 8  |-  ( x  =  C  ->  (
( A  +o  x
)  e.  ( B  +o  x )  <->  ( A  +o  C )  e.  ( B  +o  C ) ) )
43imbi2d 228 . . . . . . 7  |-  ( x  =  C  ->  (
( ( B  e. 
om  /\  A  e.  B )  ->  ( A  +o  x )  e.  ( B  +o  x
) )  <->  ( ( B  e.  om  /\  A  e.  B )  ->  ( A  +o  C )  e.  ( B  +o  C
) ) ) )
5 oveq2 5540 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( A  +o  x )  =  ( A  +o  (/) ) )
6 oveq2 5540 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( B  +o  x )  =  ( B  +o  (/) ) )
75, 6eleq12d 2149 . . . . . . . 8  |-  ( x  =  (/)  ->  ( ( A  +o  x )  e.  ( B  +o  x )  <->  ( A  +o  (/) )  e.  ( B  +o  (/) ) ) )
8 oveq2 5540 . . . . . . . . 9  |-  ( x  =  y  ->  ( A  +o  x )  =  ( A  +o  y
) )
9 oveq2 5540 . . . . . . . . 9  |-  ( x  =  y  ->  ( B  +o  x )  =  ( B  +o  y
) )
108, 9eleq12d 2149 . . . . . . . 8  |-  ( x  =  y  ->  (
( A  +o  x
)  e.  ( B  +o  x )  <->  ( A  +o  y )  e.  ( B  +o  y ) ) )
11 oveq2 5540 . . . . . . . . 9  |-  ( x  =  suc  y  -> 
( A  +o  x
)  =  ( A  +o  suc  y ) )
12 oveq2 5540 . . . . . . . . 9  |-  ( x  =  suc  y  -> 
( B  +o  x
)  =  ( B  +o  suc  y ) )
1311, 12eleq12d 2149 . . . . . . . 8  |-  ( x  =  suc  y  -> 
( ( A  +o  x )  e.  ( B  +o  x )  <-> 
( A  +o  suc  y )  e.  ( B  +o  suc  y
) ) )
14 simpr 108 . . . . . . . . 9  |-  ( ( B  e.  om  /\  A  e.  B )  ->  A  e.  B )
15 elnn 4346 . . . . . . . . . . 11  |-  ( ( A  e.  B  /\  B  e.  om )  ->  A  e.  om )
1615ancoms 264 . . . . . . . . . 10  |-  ( ( B  e.  om  /\  A  e.  B )  ->  A  e.  om )
17 nna0 6076 . . . . . . . . . 10  |-  ( A  e.  om  ->  ( A  +o  (/) )  =  A )
1816, 17syl 14 . . . . . . . . 9  |-  ( ( B  e.  om  /\  A  e.  B )  ->  ( A  +o  (/) )  =  A )
19 nna0 6076 . . . . . . . . . 10  |-  ( B  e.  om  ->  ( B  +o  (/) )  =  B )
2019adantr 270 . . . . . . . . 9  |-  ( ( B  e.  om  /\  A  e.  B )  ->  ( B  +o  (/) )  =  B )
2114, 18, 203eltr4d 2162 . . . . . . . 8  |-  ( ( B  e.  om  /\  A  e.  B )  ->  ( A  +o  (/) )  e.  ( B  +o  (/) ) )
22 simprl 497 . . . . . . . . . . . . 13  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  B  e.  om )
23 simpl 107 . . . . . . . . . . . . 13  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  y  e.  om )
24 nnacl 6082 . . . . . . . . . . . . 13  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( B  +o  y
)  e.  om )
2522, 23, 24syl2anc 403 . . . . . . . . . . . 12  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( B  +o  y )  e.  om )
26 nnsucelsuc 6093 . . . . . . . . . . . 12  |-  ( ( B  +o  y )  e.  om  ->  (
( A  +o  y
)  e.  ( B  +o  y )  <->  suc  ( A  +o  y )  e. 
suc  ( B  +o  y ) ) )
2725, 26syl 14 . . . . . . . . . . 11  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( ( A  +o  y )  e.  ( B  +o  y
)  <->  suc  ( A  +o  y )  e.  suc  ( B  +o  y
) ) )
2816adantl 271 . . . . . . . . . . . . . 14  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  A  e.  om )
29 nnon 4350 . . . . . . . . . . . . . 14  |-  ( A  e.  om  ->  A  e.  On )
3028, 29syl 14 . . . . . . . . . . . . 13  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  A  e.  On )
31 nnon 4350 . . . . . . . . . . . . . 14  |-  ( y  e.  om  ->  y  e.  On )
3231adantr 270 . . . . . . . . . . . . 13  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  y  e.  On )
33 oasuc 6067 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( A  +o  suc  y )  =  suc  ( A  +o  y
) )
3430, 32, 33syl2anc 403 . . . . . . . . . . . 12  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( A  +o  suc  y )  =  suc  ( A  +o  y ) )
35 nnon 4350 . . . . . . . . . . . . . 14  |-  ( B  e.  om  ->  B  e.  On )
3635ad2antrl 473 . . . . . . . . . . . . 13  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  B  e.  On )
37 oasuc 6067 . . . . . . . . . . . . 13  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( B  +o  suc  y )  =  suc  ( B  +o  y
) )
3836, 32, 37syl2anc 403 . . . . . . . . . . . 12  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( B  +o  suc  y )  =  suc  ( B  +o  y ) )
3934, 38eleq12d 2149 . . . . . . . . . . 11  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( ( A  +o  suc  y )  e.  ( B  +o  suc  y )  <->  suc  ( A  +o  y )  e. 
suc  ( B  +o  y ) ) )
4027, 39bitr4d 189 . . . . . . . . . 10  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( ( A  +o  y )  e.  ( B  +o  y
)  <->  ( A  +o  suc  y )  e.  ( B  +o  suc  y
) ) )
4140biimpd 142 . . . . . . . . 9  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( ( A  +o  y )  e.  ( B  +o  y
)  ->  ( A  +o  suc  y )  e.  ( B  +o  suc  y ) ) )
4241ex 113 . . . . . . . 8  |-  ( y  e.  om  ->  (
( B  e.  om  /\  A  e.  B )  ->  ( ( A  +o  y )  e.  ( B  +o  y
)  ->  ( A  +o  suc  y )  e.  ( B  +o  suc  y ) ) ) )
437, 10, 13, 21, 42finds2 4342 . . . . . . 7  |-  ( x  e.  om  ->  (
( B  e.  om  /\  A  e.  B )  ->  ( A  +o  x )  e.  ( B  +o  x ) ) )
444, 43vtoclga 2664 . . . . . 6  |-  ( C  e.  om  ->  (
( B  e.  om  /\  A  e.  B )  ->  ( A  +o  C )  e.  ( B  +o  C ) ) )
4544imp 122 . . . . 5  |-  ( ( C  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( A  +o  C )  e.  ( B  +o  C ) )
4616adantl 271 . . . . . 6  |-  ( ( C  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  A  e.  om )
47 simpl 107 . . . . . 6  |-  ( ( C  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  C  e.  om )
48 nnacom 6086 . . . . . 6  |-  ( ( A  e.  om  /\  C  e.  om )  ->  ( A  +o  C
)  =  ( C  +o  A ) )
4946, 47, 48syl2anc 403 . . . . 5  |-  ( ( C  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( A  +o  C )  =  ( C  +o  A ) )
50 nnacom 6086 . . . . . . 7  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( B  +o  C
)  =  ( C  +o  B ) )
5150ancoms 264 . . . . . 6  |-  ( ( C  e.  om  /\  B  e.  om )  ->  ( B  +o  C
)  =  ( C  +o  B ) )
5251adantrr 462 . . . . 5  |-  ( ( C  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( B  +o  C )  =  ( C  +o  B ) )
5345, 49, 523eltr3d 2161 . . . 4  |-  ( ( C  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( C  +o  A )  e.  ( C  +o  B ) )
54533impb 1134 . . 3  |-  ( ( C  e.  om  /\  B  e.  om  /\  A  e.  B )  ->  ( C  +o  A )  e.  ( C  +o  B
) )
55543com12 1142 . 2  |-  ( ( B  e.  om  /\  C  e.  om  /\  A  e.  B )  ->  ( C  +o  A )  e.  ( C  +o  B
) )
56553expia 1140 1  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( A  e.  B  ->  ( C  +o  A
)  e.  ( C  +o  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   (/)c0 3251   Oncon0 4118   suc csuc 4120   omcom 4331  (class class class)co 5532    +o coa 6021
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028
This theorem is referenced by:  nnaord  6105  nnmordi  6112  addclpi  6517  addnidpig  6526  archnqq  6607  prarloclemarch2  6609  prarloclemlt  6683
  Copyright terms: Public domain W3C validator