| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > faclbnd3 | Unicode version | ||
| Description: A lower bound for the factorial function. (Contributed by NM, 19-Dec-2005.) |
| Ref | Expression |
|---|---|
| faclbnd3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 8290 |
. 2
| |
| 2 | nnre 8046 |
. . . . . 6
| |
| 3 | 2 | adantr 270 |
. . . . 5
|
| 4 | nnge1 8062 |
. . . . . 6
| |
| 5 | 4 | adantr 270 |
. . . . 5
|
| 6 | nn0z 8371 |
. . . . . . 7
| |
| 7 | 6 | adantl 271 |
. . . . . 6
|
| 8 | uzid 8633 |
. . . . . 6
| |
| 9 | peano2uz 8671 |
. . . . . 6
| |
| 10 | 7, 8, 9 | 3syl 17 |
. . . . 5
|
| 11 | 3, 5, 10 | leexp2ad 9634 |
. . . 4
|
| 12 | nnnn0 8295 |
. . . . 5
| |
| 13 | faclbnd 9668 |
. . . . 5
| |
| 14 | 12, 13 | sylan 277 |
. . . 4
|
| 15 | nn0re 8297 |
. . . . . . 7
| |
| 16 | reexpcl 9493 |
. . . . . . 7
| |
| 17 | 15, 16 | sylan 277 |
. . . . . 6
|
| 18 | peano2nn0 8328 |
. . . . . . 7
| |
| 19 | reexpcl 9493 |
. . . . . . 7
| |
| 20 | 15, 18, 19 | syl2an 283 |
. . . . . 6
|
| 21 | reexpcl 9493 |
. . . . . . . 8
| |
| 22 | 15, 21 | mpancom 413 |
. . . . . . 7
|
| 23 | faccl 9662 |
. . . . . . . 8
| |
| 24 | 23 | nnred 8052 |
. . . . . . 7
|
| 25 | remulcl 7101 |
. . . . . . 7
| |
| 26 | 22, 24, 25 | syl2an 283 |
. . . . . 6
|
| 27 | letr 7194 |
. . . . . 6
| |
| 28 | 17, 20, 26, 27 | syl3anc 1169 |
. . . . 5
|
| 29 | 12, 28 | sylan 277 |
. . . 4
|
| 30 | 11, 14, 29 | mp2and 423 |
. . 3
|
| 31 | elnn0 8290 |
. . . . . . 7
| |
| 32 | 0exp 9511 |
. . . . . . . . 9
| |
| 33 | 0le1 7585 |
. . . . . . . . 9
| |
| 34 | 32, 33 | syl6eqbr 3822 |
. . . . . . . 8
|
| 35 | oveq2 5540 |
. . . . . . . . 9
| |
| 36 | 0exp0e1 9481 |
. . . . . . . . . 10
| |
| 37 | 1le1 7672 |
. . . . . . . . . 10
| |
| 38 | 36, 37 | eqbrtri 3804 |
. . . . . . . . 9
|
| 39 | 35, 38 | syl6eqbr 3822 |
. . . . . . . 8
|
| 40 | 34, 39 | jaoi 668 |
. . . . . . 7
|
| 41 | 31, 40 | sylbi 119 |
. . . . . 6
|
| 42 | 1nn 8050 |
. . . . . . . 8
| |
| 43 | nnmulcl 8060 |
. . . . . . . 8
| |
| 44 | 42, 23, 43 | sylancr 405 |
. . . . . . 7
|
| 45 | 44 | nnge1d 8081 |
. . . . . 6
|
| 46 | 0re 7119 |
. . . . . . . 8
| |
| 47 | reexpcl 9493 |
. . . . . . . 8
| |
| 48 | 46, 47 | mpan 414 |
. . . . . . 7
|
| 49 | 1re 7118 |
. . . . . . . 8
| |
| 50 | remulcl 7101 |
. . . . . . . 8
| |
| 51 | 49, 24, 50 | sylancr 405 |
. . . . . . 7
|
| 52 | letr 7194 |
. . . . . . . 8
| |
| 53 | 49, 52 | mp3an2 1256 |
. . . . . . 7
|
| 54 | 48, 51, 53 | syl2anc 403 |
. . . . . 6
|
| 55 | 41, 45, 54 | mp2and 423 |
. . . . 5
|
| 56 | 55 | adantl 271 |
. . . 4
|
| 57 | oveq1 5539 |
. . . . . 6
| |
| 58 | oveq12 5541 |
. . . . . . . . 9
| |
| 59 | 58 | anidms 389 |
. . . . . . . 8
|
| 60 | 59, 36 | syl6eq 2129 |
. . . . . . 7
|
| 61 | 60 | oveq1d 5547 |
. . . . . 6
|
| 62 | 57, 61 | breq12d 3798 |
. . . . 5
|
| 63 | 62 | adantr 270 |
. . . 4
|
| 64 | 56, 63 | mpbird 165 |
. . 3
|
| 65 | 30, 64 | jaoian 741 |
. 2
|
| 66 | 1, 65 | sylanb 278 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 ax-pre-mulext 7094 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-if 3352 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-frec 6001 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-reap 7675 df-ap 7682 df-div 7761 df-inn 8040 df-n0 8289 df-z 8352 df-uz 8620 df-rp 8735 df-iseq 9432 df-iexp 9476 df-fac 9653 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |