ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  faclbnd3 Unicode version

Theorem faclbnd3 9670
Description: A lower bound for the factorial function. (Contributed by NM, 19-Dec-2005.)
Assertion
Ref Expression
faclbnd3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M ^ N
)  <_  ( ( M ^ M )  x.  ( ! `  N
) ) )

Proof of Theorem faclbnd3
StepHypRef Expression
1 elnn0 8290 . 2  |-  ( M  e.  NN0  <->  ( M  e.  NN  \/  M  =  0 ) )
2 nnre 8046 . . . . . 6  |-  ( M  e.  NN  ->  M  e.  RR )
32adantr 270 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  ->  M  e.  RR )
4 nnge1 8062 . . . . . 6  |-  ( M  e.  NN  ->  1  <_  M )
54adantr 270 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  -> 
1  <_  M )
6 nn0z 8371 . . . . . . 7  |-  ( N  e.  NN0  ->  N  e.  ZZ )
76adantl 271 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  ->  N  e.  ZZ )
8 uzid 8633 . . . . . 6  |-  ( N  e.  ZZ  ->  N  e.  ( ZZ>= `  N )
)
9 peano2uz 8671 . . . . . 6  |-  ( N  e.  ( ZZ>= `  N
)  ->  ( N  +  1 )  e.  ( ZZ>= `  N )
)
107, 8, 93syl 17 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  -> 
( N  +  1 )  e.  ( ZZ>= `  N ) )
113, 5, 10leexp2ad 9634 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  -> 
( M ^ N
)  <_  ( M ^ ( N  + 
1 ) ) )
12 nnnn0 8295 . . . . 5  |-  ( M  e.  NN  ->  M  e.  NN0 )
13 faclbnd 9668 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M ^ ( N  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  N
) ) )
1412, 13sylan 277 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  -> 
( M ^ ( N  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  N
) ) )
15 nn0re 8297 . . . . . . 7  |-  ( M  e.  NN0  ->  M  e.  RR )
16 reexpcl 9493 . . . . . . 7  |-  ( ( M  e.  RR  /\  N  e.  NN0 )  -> 
( M ^ N
)  e.  RR )
1715, 16sylan 277 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M ^ N
)  e.  RR )
18 peano2nn0 8328 . . . . . . 7  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
19 reexpcl 9493 . . . . . . 7  |-  ( ( M  e.  RR  /\  ( N  +  1
)  e.  NN0 )  ->  ( M ^ ( N  +  1 ) )  e.  RR )
2015, 18, 19syl2an 283 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M ^ ( N  +  1 ) )  e.  RR )
21 reexpcl 9493 . . . . . . . 8  |-  ( ( M  e.  RR  /\  M  e.  NN0 )  -> 
( M ^ M
)  e.  RR )
2215, 21mpancom 413 . . . . . . 7  |-  ( M  e.  NN0  ->  ( M ^ M )  e.  RR )
23 faccl 9662 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
2423nnred 8052 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  RR )
25 remulcl 7101 . . . . . . 7  |-  ( ( ( M ^ M
)  e.  RR  /\  ( ! `  N )  e.  RR )  -> 
( ( M ^ M )  x.  ( ! `  N )
)  e.  RR )
2622, 24, 25syl2an 283 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( M ^ M )  x.  ( ! `  N )
)  e.  RR )
27 letr 7194 . . . . . 6  |-  ( ( ( M ^ N
)  e.  RR  /\  ( M ^ ( N  +  1 ) )  e.  RR  /\  (
( M ^ M
)  x.  ( ! `
 N ) )  e.  RR )  -> 
( ( ( M ^ N )  <_ 
( M ^ ( N  +  1 ) )  /\  ( M ^ ( N  + 
1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  N )
) )  ->  ( M ^ N )  <_ 
( ( M ^ M )  x.  ( ! `  N )
) ) )
2817, 20, 26, 27syl3anc 1169 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( M ^ N )  <_ 
( M ^ ( N  +  1 ) )  /\  ( M ^ ( N  + 
1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  N )
) )  ->  ( M ^ N )  <_ 
( ( M ^ M )  x.  ( ! `  N )
) ) )
2912, 28sylan 277 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  -> 
( ( ( M ^ N )  <_ 
( M ^ ( N  +  1 ) )  /\  ( M ^ ( N  + 
1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  N )
) )  ->  ( M ^ N )  <_ 
( ( M ^ M )  x.  ( ! `  N )
) ) )
3011, 14, 29mp2and 423 . . 3  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  -> 
( M ^ N
)  <_  ( ( M ^ M )  x.  ( ! `  N
) ) )
31 elnn0 8290 . . . . . . 7  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
32 0exp 9511 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
0 ^ N )  =  0 )
33 0le1 7585 . . . . . . . . 9  |-  0  <_  1
3432, 33syl6eqbr 3822 . . . . . . . 8  |-  ( N  e.  NN  ->  (
0 ^ N )  <_  1 )
35 oveq2 5540 . . . . . . . . 9  |-  ( N  =  0  ->  (
0 ^ N )  =  ( 0 ^ 0 ) )
36 0exp0e1 9481 . . . . . . . . . 10  |-  ( 0 ^ 0 )  =  1
37 1le1 7672 . . . . . . . . . 10  |-  1  <_  1
3836, 37eqbrtri 3804 . . . . . . . . 9  |-  ( 0 ^ 0 )  <_ 
1
3935, 38syl6eqbr 3822 . . . . . . . 8  |-  ( N  =  0  ->  (
0 ^ N )  <_  1 )
4034, 39jaoi 668 . . . . . . 7  |-  ( ( N  e.  NN  \/  N  =  0 )  ->  ( 0 ^ N )  <_  1
)
4131, 40sylbi 119 . . . . . 6  |-  ( N  e.  NN0  ->  ( 0 ^ N )  <_ 
1 )
42 1nn 8050 . . . . . . . 8  |-  1  e.  NN
43 nnmulcl 8060 . . . . . . . 8  |-  ( ( 1  e.  NN  /\  ( ! `  N )  e.  NN )  -> 
( 1  x.  ( ! `  N )
)  e.  NN )
4442, 23, 43sylancr 405 . . . . . . 7  |-  ( N  e.  NN0  ->  ( 1  x.  ( ! `  N ) )  e.  NN )
4544nnge1d 8081 . . . . . 6  |-  ( N  e.  NN0  ->  1  <_ 
( 1  x.  ( ! `  N )
) )
46 0re 7119 . . . . . . . 8  |-  0  e.  RR
47 reexpcl 9493 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  N  e.  NN0 )  -> 
( 0 ^ N
)  e.  RR )
4846, 47mpan 414 . . . . . . 7  |-  ( N  e.  NN0  ->  ( 0 ^ N )  e.  RR )
49 1re 7118 . . . . . . . 8  |-  1  e.  RR
50 remulcl 7101 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  ( ! `  N )  e.  RR )  -> 
( 1  x.  ( ! `  N )
)  e.  RR )
5149, 24, 50sylancr 405 . . . . . . 7  |-  ( N  e.  NN0  ->  ( 1  x.  ( ! `  N ) )  e.  RR )
52 letr 7194 . . . . . . . 8  |-  ( ( ( 0 ^ N
)  e.  RR  /\  1  e.  RR  /\  (
1  x.  ( ! `
 N ) )  e.  RR )  -> 
( ( ( 0 ^ N )  <_ 
1  /\  1  <_  ( 1  x.  ( ! `
 N ) ) )  ->  ( 0 ^ N )  <_ 
( 1  x.  ( ! `  N )
) ) )
5349, 52mp3an2 1256 . . . . . . 7  |-  ( ( ( 0 ^ N
)  e.  RR  /\  ( 1  x.  ( ! `  N )
)  e.  RR )  ->  ( ( ( 0 ^ N )  <_  1  /\  1  <_  ( 1  x.  ( ! `  N )
) )  ->  (
0 ^ N )  <_  ( 1  x.  ( ! `  N
) ) ) )
5448, 51, 53syl2anc 403 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( ( 0 ^ N
)  <_  1  /\  1  <_  ( 1  x.  ( ! `  N
) ) )  -> 
( 0 ^ N
)  <_  ( 1  x.  ( ! `  N ) ) ) )
5541, 45, 54mp2and 423 . . . . 5  |-  ( N  e.  NN0  ->  ( 0 ^ N )  <_ 
( 1  x.  ( ! `  N )
) )
5655adantl 271 . . . 4  |-  ( ( M  =  0  /\  N  e.  NN0 )  ->  ( 0 ^ N
)  <_  ( 1  x.  ( ! `  N ) ) )
57 oveq1 5539 . . . . . 6  |-  ( M  =  0  ->  ( M ^ N )  =  ( 0 ^ N
) )
58 oveq12 5541 . . . . . . . . 9  |-  ( ( M  =  0  /\  M  =  0 )  ->  ( M ^ M )  =  ( 0 ^ 0 ) )
5958anidms 389 . . . . . . . 8  |-  ( M  =  0  ->  ( M ^ M )  =  ( 0 ^ 0 ) )
6059, 36syl6eq 2129 . . . . . . 7  |-  ( M  =  0  ->  ( M ^ M )  =  1 )
6160oveq1d 5547 . . . . . 6  |-  ( M  =  0  ->  (
( M ^ M
)  x.  ( ! `
 N ) )  =  ( 1  x.  ( ! `  N
) ) )
6257, 61breq12d 3798 . . . . 5  |-  ( M  =  0  ->  (
( M ^ N
)  <_  ( ( M ^ M )  x.  ( ! `  N
) )  <->  ( 0 ^ N )  <_ 
( 1  x.  ( ! `  N )
) ) )
6362adantr 270 . . . 4  |-  ( ( M  =  0  /\  N  e.  NN0 )  ->  ( ( M ^ N )  <_  (
( M ^ M
)  x.  ( ! `
 N ) )  <-> 
( 0 ^ N
)  <_  ( 1  x.  ( ! `  N ) ) ) )
6456, 63mpbird 165 . . 3  |-  ( ( M  =  0  /\  N  e.  NN0 )  ->  ( M ^ N
)  <_  ( ( M ^ M )  x.  ( ! `  N
) ) )
6530, 64jaoian 741 . 2  |-  ( ( ( M  e.  NN  \/  M  =  0
)  /\  N  e.  NN0 )  ->  ( M ^ N )  <_  (
( M ^ M
)  x.  ( ! `
 N ) ) )
661, 65sylanb 278 1  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M ^ N
)  <_  ( ( M ^ M )  x.  ( ! `  N
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661    = wceq 1284    e. wcel 1433   class class class wbr 3785   ` cfv 4922  (class class class)co 5532   RRcr 6980   0cc0 6981   1c1 6982    + caddc 6984    x. cmul 6986    <_ cle 7154   NNcn 8039   NN0cn0 8288   ZZcz 8351   ZZ>=cuz 8619   ^cexp 9475   !cfa 9652
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-rp 8735  df-iseq 9432  df-iexp 9476  df-fac 9653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator