| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > modqmulnn | Unicode version | ||
| Description: Move a positive integer in and out of a floor in the first argument of a modulo operation. (Contributed by Jim Kingdon, 18-Oct-2021.) |
| Ref | Expression |
|---|---|
| modqmulnn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnq 8718 |
. . . . . 6
| |
| 2 | 1 | 3ad2ant1 959 |
. . . . 5
|
| 3 | flqcl 9277 |
. . . . . . 7
| |
| 4 | zq 8711 |
. . . . . . 7
| |
| 5 | 3, 4 | syl 14 |
. . . . . 6
|
| 6 | 5 | 3ad2ant2 960 |
. . . . 5
|
| 7 | qmulcl 8722 |
. . . . 5
| |
| 8 | 2, 6, 7 | syl2anc 403 |
. . . 4
|
| 9 | qre 8710 |
. . . 4
| |
| 10 | 8, 9 | syl 14 |
. . 3
|
| 11 | simp2 939 |
. . . . . 6
| |
| 12 | qmulcl 8722 |
. . . . . 6
| |
| 13 | 2, 11, 12 | syl2anc 403 |
. . . . 5
|
| 14 | 13 | flqcld 9279 |
. . . 4
|
| 15 | 14 | zred 8469 |
. . 3
|
| 16 | nnmulcl 8060 |
. . . . . . 7
| |
| 17 | nnq 8718 |
. . . . . . 7
| |
| 18 | 16, 17 | syl 14 |
. . . . . 6
|
| 19 | 18 | 3adant2 957 |
. . . . 5
|
| 20 | qre 8710 |
. . . . 5
| |
| 21 | 19, 20 | syl 14 |
. . . 4
|
| 22 | simp1 938 |
. . . . . . . . . 10
| |
| 23 | 22 | nncnd 8053 |
. . . . . . . . 9
|
| 24 | simp3 940 |
. . . . . . . . . 10
| |
| 25 | 24 | nncnd 8053 |
. . . . . . . . 9
|
| 26 | 22 | nnap0d 8084 |
. . . . . . . . 9
|
| 27 | 24 | nnap0d 8084 |
. . . . . . . . 9
|
| 28 | 23, 25, 26, 27 | mulap0d 7748 |
. . . . . . . 8
|
| 29 | 0z 8362 |
. . . . . . . . . 10
| |
| 30 | zq 8711 |
. . . . . . . . . 10
| |
| 31 | 29, 30 | ax-mp 7 |
. . . . . . . . 9
|
| 32 | qapne 8724 |
. . . . . . . . 9
| |
| 33 | 19, 31, 32 | sylancl 404 |
. . . . . . . 8
|
| 34 | 28, 33 | mpbid 145 |
. . . . . . 7
|
| 35 | qdivcl 8728 |
. . . . . . 7
| |
| 36 | 8, 19, 34, 35 | syl3anc 1169 |
. . . . . 6
|
| 37 | 36 | flqcld 9279 |
. . . . 5
|
| 38 | 37 | zred 8469 |
. . . 4
|
| 39 | 21, 38 | remulcld 7149 |
. . 3
|
| 40 | nnnn0 8295 |
. . . . 5
| |
| 41 | flqmulnn0 9301 |
. . . . 5
| |
| 42 | 40, 41 | sylan 277 |
. . . 4
|
| 43 | 22, 11, 42 | syl2anc 403 |
. . 3
|
| 44 | 10, 15, 39, 43 | lesub1dd 7661 |
. 2
|
| 45 | 22 | nnred 8052 |
. . . 4
|
| 46 | 24 | nnred 8052 |
. . . 4
|
| 47 | 22 | nngt0d 8082 |
. . . 4
|
| 48 | 24 | nngt0d 8082 |
. . . 4
|
| 49 | 45, 46, 47, 48 | mulgt0d 7232 |
. . 3
|
| 50 | modqval 9326 |
. . 3
| |
| 51 | 8, 19, 49, 50 | syl3anc 1169 |
. 2
|
| 52 | zq 8711 |
. . . . 5
| |
| 53 | 14, 52 | syl 14 |
. . . 4
|
| 54 | modqval 9326 |
. . . 4
| |
| 55 | 53, 19, 49, 54 | syl3anc 1169 |
. . 3
|
| 56 | 16 | 3adant2 957 |
. . . . . . 7
|
| 57 | flqdiv 9323 |
. . . . . . 7
| |
| 58 | 13, 56, 57 | syl2anc 403 |
. . . . . 6
|
| 59 | flqdiv 9323 |
. . . . . . . 8
| |
| 60 | 59 | 3adant1 956 |
. . . . . . 7
|
| 61 | 3 | zcnd 8470 |
. . . . . . . . . 10
|
| 62 | 11, 61 | syl 14 |
. . . . . . . . 9
|
| 63 | 62, 25, 23, 27, 26 | divcanap5d 7903 |
. . . . . . . 8
|
| 64 | 63 | fveq2d 5202 |
. . . . . . 7
|
| 65 | qcn 8719 |
. . . . . . . . . 10
| |
| 66 | 11, 65 | syl 14 |
. . . . . . . . 9
|
| 67 | 66, 25, 23, 27, 26 | divcanap5d 7903 |
. . . . . . . 8
|
| 68 | 67 | fveq2d 5202 |
. . . . . . 7
|
| 69 | 60, 64, 68 | 3eqtr4rd 2124 |
. . . . . 6
|
| 70 | 58, 69 | eqtrd 2113 |
. . . . 5
|
| 71 | 70 | oveq2d 5548 |
. . . 4
|
| 72 | 71 | oveq2d 5548 |
. . 3
|
| 73 | 55, 72 | eqtrd 2113 |
. 2
|
| 74 | 44, 51, 73 | 3brtr4d 3815 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 ax-pre-mulext 7094 ax-arch 7095 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-po 4051 df-iso 4052 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-reap 7675 df-ap 7682 df-div 7761 df-inn 8040 df-n0 8289 df-z 8352 df-q 8705 df-rp 8735 df-fl 9274 df-mod 9325 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |