| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oddge22np1 | Unicode version | ||
| Description: An integer greater than one is odd iff it is one plus twice a positive integer. (Contributed by AV, 16-Aug-2021.) |
| Ref | Expression |
|---|---|
| oddge22np1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2141 |
. . . . . . . 8
| |
| 2 | nn0z 8371 |
. . . . . . . . . . 11
| |
| 3 | 2 | adantl 271 |
. . . . . . . . . 10
|
| 4 | eluz2 8625 |
. . . . . . . . . . . 12
| |
| 5 | 2re 8109 |
. . . . . . . . . . . . . . . . 17
| |
| 6 | 5 | a1i 9 |
. . . . . . . . . . . . . . . 16
|
| 7 | 1red 7134 |
. . . . . . . . . . . . . . . 16
| |
| 8 | 2nn0 8305 |
. . . . . . . . . . . . . . . . . . 19
| |
| 9 | 8 | a1i 9 |
. . . . . . . . . . . . . . . . . 18
|
| 10 | id 19 |
. . . . . . . . . . . . . . . . . 18
| |
| 11 | 9, 10 | nn0mulcld 8346 |
. . . . . . . . . . . . . . . . 17
|
| 12 | 11 | nn0red 8342 |
. . . . . . . . . . . . . . . 16
|
| 13 | 6, 7, 12 | lesubaddd 7642 |
. . . . . . . . . . . . . . 15
|
| 14 | 2m1e1 8156 |
. . . . . . . . . . . . . . . . 17
| |
| 15 | 14 | breq1i 3792 |
. . . . . . . . . . . . . . . 16
|
| 16 | nn0re 8297 |
. . . . . . . . . . . . . . . . . 18
| |
| 17 | 2pos 8130 |
. . . . . . . . . . . . . . . . . . . 20
| |
| 18 | 5, 17 | pm3.2i 266 |
. . . . . . . . . . . . . . . . . . 19
|
| 19 | 18 | a1i 9 |
. . . . . . . . . . . . . . . . . 18
|
| 20 | ledivmul 7955 |
. . . . . . . . . . . . . . . . . 18
| |
| 21 | 7, 16, 19, 20 | syl3anc 1169 |
. . . . . . . . . . . . . . . . 17
|
| 22 | halfgt0 8246 |
. . . . . . . . . . . . . . . . . 18
| |
| 23 | 0red 7120 |
. . . . . . . . . . . . . . . . . . 19
| |
| 24 | halfre 8244 |
. . . . . . . . . . . . . . . . . . . 20
| |
| 25 | 24 | a1i 9 |
. . . . . . . . . . . . . . . . . . 19
|
| 26 | ltletr 7200 |
. . . . . . . . . . . . . . . . . . 19
| |
| 27 | 23, 25, 16, 26 | syl3anc 1169 |
. . . . . . . . . . . . . . . . . 18
|
| 28 | 22, 27 | mpani 420 |
. . . . . . . . . . . . . . . . 17
|
| 29 | 21, 28 | sylbird 168 |
. . . . . . . . . . . . . . . 16
|
| 30 | 15, 29 | syl5bi 150 |
. . . . . . . . . . . . . . 15
|
| 31 | 13, 30 | sylbird 168 |
. . . . . . . . . . . . . 14
|
| 32 | 31 | com12 30 |
. . . . . . . . . . . . 13
|
| 33 | 32 | 3ad2ant3 961 |
. . . . . . . . . . . 12
|
| 34 | 4, 33 | sylbi 119 |
. . . . . . . . . . 11
|
| 35 | 34 | imp 122 |
. . . . . . . . . 10
|
| 36 | elnnz 8361 |
. . . . . . . . . 10
| |
| 37 | 3, 35, 36 | sylanbrc 408 |
. . . . . . . . 9
|
| 38 | 37 | ex 113 |
. . . . . . . 8
|
| 39 | 1, 38 | syl6bir 162 |
. . . . . . 7
|
| 40 | 39 | com13 79 |
. . . . . 6
|
| 41 | 40 | impcom 123 |
. . . . 5
|
| 42 | 41 | pm4.71rd 386 |
. . . 4
|
| 43 | 42 | bicomd 139 |
. . 3
|
| 44 | 43 | rexbidva 2365 |
. 2
|
| 45 | nnssnn0 8291 |
. . 3
| |
| 46 | rexss 3061 |
. . 3
| |
| 47 | 45, 46 | mp1i 10 |
. 2
|
| 48 | eluzge2nn0 8658 |
. . 3
| |
| 49 | oddnn02np1 10280 |
. . 3
| |
| 50 | 48, 49 | syl 14 |
. 2
|
| 51 | 44, 47, 50 | 3bitr4rd 219 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 ax-pre-mulext 7094 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-xor 1307 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-po 4051 df-iso 4052 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-reap 7675 df-ap 7682 df-div 7761 df-inn 8040 df-2 8098 df-n0 8289 df-z 8352 df-uz 8620 df-dvds 10196 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |