| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onsucsssucexmid | Unicode version | ||
| Description: The converse of onsucsssucr 4253 implies excluded middle. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2019.) |
| Ref | Expression |
|---|---|
| onsucsssucexmid.1 |
|
| Ref | Expression |
|---|---|
| onsucsssucexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3079 |
. . . . . 6
| |
| 2 | ordtriexmidlem 4263 |
. . . . . . 7
| |
| 3 | sseq1 3020 |
. . . . . . . . 9
| |
| 4 | suceq 4157 |
. . . . . . . . . 10
| |
| 5 | 4 | sseq1d 3026 |
. . . . . . . . 9
|
| 6 | 3, 5 | imbi12d 232 |
. . . . . . . 8
|
| 7 | suc0 4166 |
. . . . . . . . . 10
| |
| 8 | 0elon 4147 |
. . . . . . . . . . 11
| |
| 9 | 8 | onsuci 4260 |
. . . . . . . . . 10
|
| 10 | 7, 9 | eqeltrri 2152 |
. . . . . . . . 9
|
| 11 | p0ex 3959 |
. . . . . . . . . 10
| |
| 12 | eleq1 2141 |
. . . . . . . . . . . 12
| |
| 13 | 12 | anbi2d 451 |
. . . . . . . . . . 11
|
| 14 | sseq2 3021 |
. . . . . . . . . . . 12
| |
| 15 | suceq 4157 |
. . . . . . . . . . . . 13
| |
| 16 | 15 | sseq2d 3027 |
. . . . . . . . . . . 12
|
| 17 | 14, 16 | imbi12d 232 |
. . . . . . . . . . 11
|
| 18 | 13, 17 | imbi12d 232 |
. . . . . . . . . 10
|
| 19 | onsucsssucexmid.1 |
. . . . . . . . . . 11
| |
| 20 | 19 | rspec2 2450 |
. . . . . . . . . 10
|
| 21 | 11, 18, 20 | vtocl 2653 |
. . . . . . . . 9
|
| 22 | 10, 21 | mpan2 415 |
. . . . . . . 8
|
| 23 | 6, 22 | vtoclga 2664 |
. . . . . . 7
|
| 24 | 2, 23 | ax-mp 7 |
. . . . . 6
|
| 25 | 1, 24 | ax-mp 7 |
. . . . 5
|
| 26 | 10 | onsuci 4260 |
. . . . . . 7
|
| 27 | 26 | onordi 4181 |
. . . . . 6
|
| 28 | ordelsuc 4249 |
. . . . . 6
| |
| 29 | 2, 27, 28 | mp2an 416 |
. . . . 5
|
| 30 | 25, 29 | mpbir 144 |
. . . 4
|
| 31 | elsucg 4159 |
. . . . 5
| |
| 32 | 2, 31 | ax-mp 7 |
. . . 4
|
| 33 | 30, 32 | mpbi 143 |
. . 3
|
| 34 | elsni 3416 |
. . . . 5
| |
| 35 | ordtriexmidlem2 4264 |
. . . . 5
| |
| 36 | 34, 35 | syl 14 |
. . . 4
|
| 37 | 0ex 3905 |
. . . . 5
| |
| 38 | biidd 170 |
. . . . 5
| |
| 39 | 37, 38 | rabsnt 3467 |
. . . 4
|
| 40 | 36, 39 | orim12i 708 |
. . 3
|
| 41 | 33, 40 | ax-mp 7 |
. 2
|
| 42 | orcom 679 |
. 2
| |
| 43 | 41, 42 | mpbi 143 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-uni 3602 df-tr 3876 df-iord 4121 df-on 4123 df-suc 4126 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |