ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prime Unicode version

Theorem prime 8446
Description: Two ways to express " A is a prime number (or 1)." (Contributed by NM, 4-May-2005.)
Assertion
Ref Expression
prime  |-  ( A  e.  NN  ->  ( A. x  e.  NN  ( ( A  /  x )  e.  NN  ->  ( x  =  1  \/  x  =  A ) )  <->  A. x  e.  NN  ( ( 1  <  x  /\  x  <_  A  /\  ( A  /  x )  e.  NN )  ->  x  =  A ) ) )
Distinct variable group:    x, A

Proof of Theorem prime
StepHypRef Expression
1 nnz 8370 . . . . . . 7  |-  ( x  e.  NN  ->  x  e.  ZZ )
2 1z 8377 . . . . . . . 8  |-  1  e.  ZZ
3 zdceq 8423 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  1  e.  ZZ )  -> DECID  x  =  1 )
42, 3mpan2 415 . . . . . . 7  |-  ( x  e.  ZZ  -> DECID  x  =  1
)
5 dfordc 824 . . . . . . . 8  |-  (DECID  x  =  1  ->  ( (
x  =  1  \/  x  =  A )  <-> 
( -.  x  =  1  ->  x  =  A ) ) )
6 df-ne 2246 . . . . . . . . 9  |-  ( x  =/=  1  <->  -.  x  =  1 )
76imbi1i 236 . . . . . . . 8  |-  ( ( x  =/=  1  ->  x  =  A )  <->  ( -.  x  =  1  ->  x  =  A ) )
85, 7syl6bbr 196 . . . . . . 7  |-  (DECID  x  =  1  ->  ( (
x  =  1  \/  x  =  A )  <-> 
( x  =/=  1  ->  x  =  A ) ) )
91, 4, 83syl 17 . . . . . 6  |-  ( x  e.  NN  ->  (
( x  =  1  \/  x  =  A )  <->  ( x  =/=  1  ->  x  =  A ) ) )
109imbi2d 228 . . . . 5  |-  ( x  e.  NN  ->  (
( ( A  /  x )  e.  NN  ->  ( x  =  1  \/  x  =  A ) )  <->  ( ( A  /  x )  e.  NN  ->  ( x  =/=  1  ->  x  =  A ) ) ) )
11 impexp 259 . . . . . 6  |-  ( ( ( x  =/=  1  /\  ( A  /  x
)  e.  NN )  ->  x  =  A )  <->  ( x  =/=  1  ->  ( ( A  /  x )  e.  NN  ->  x  =  A ) ) )
12 bi2.04 246 . . . . . 6  |-  ( ( x  =/=  1  -> 
( ( A  /  x )  e.  NN  ->  x  =  A ) )  <->  ( ( A  /  x )  e.  NN  ->  ( x  =/=  1  ->  x  =  A ) ) )
1311, 12bitri 182 . . . . 5  |-  ( ( ( x  =/=  1  /\  ( A  /  x
)  e.  NN )  ->  x  =  A )  <->  ( ( A  /  x )  e.  NN  ->  ( x  =/=  1  ->  x  =  A ) ) )
1410, 13syl6bbr 196 . . . 4  |-  ( x  e.  NN  ->  (
( ( A  /  x )  e.  NN  ->  ( x  =  1  \/  x  =  A ) )  <->  ( (
x  =/=  1  /\  ( A  /  x
)  e.  NN )  ->  x  =  A ) ) )
1514adantl 271 . . 3  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( ( A  /  x )  e.  NN  ->  ( x  =  1  \/  x  =  A ) )  <->  ( (
x  =/=  1  /\  ( A  /  x
)  e.  NN )  ->  x  =  A ) ) )
16 nngt1ne1 8073 . . . . . . 7  |-  ( x  e.  NN  ->  (
1  <  x  <->  x  =/=  1 ) )
1716adantl 271 . . . . . 6  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( 1  <  x  <->  x  =/=  1 ) )
1817anbi1d 452 . . . . 5  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( 1  < 
x  /\  ( A  /  x )  e.  NN ) 
<->  ( x  =/=  1  /\  ( A  /  x
)  e.  NN ) ) )
19 nnz 8370 . . . . . . . . 9  |-  ( ( A  /  x )  e.  NN  ->  ( A  /  x )  e.  ZZ )
20 nnre 8046 . . . . . . . . . . . . 13  |-  ( x  e.  NN  ->  x  e.  RR )
21 gtndiv 8442 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  A  e.  NN  /\  A  <  x )  ->  -.  ( A  /  x
)  e.  ZZ )
22213expia 1140 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  A  e.  NN )  ->  ( A  <  x  ->  -.  ( A  /  x )  e.  ZZ ) )
2320, 22sylan 277 . . . . . . . . . . . 12  |-  ( ( x  e.  NN  /\  A  e.  NN )  ->  ( A  <  x  ->  -.  ( A  /  x )  e.  ZZ ) )
2423con2d 586 . . . . . . . . . . 11  |-  ( ( x  e.  NN  /\  A  e.  NN )  ->  ( ( A  /  x )  e.  ZZ  ->  -.  A  <  x
) )
25 nnre 8046 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  A  e.  RR )
26 lenlt 7187 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  A  e.  RR )  ->  ( x  <_  A  <->  -.  A  <  x ) )
2720, 25, 26syl2an 283 . . . . . . . . . . 11  |-  ( ( x  e.  NN  /\  A  e.  NN )  ->  ( x  <_  A  <->  -.  A  <  x ) )
2824, 27sylibrd 167 . . . . . . . . . 10  |-  ( ( x  e.  NN  /\  A  e.  NN )  ->  ( ( A  /  x )  e.  ZZ  ->  x  <_  A )
)
2928ancoms 264 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( A  /  x )  e.  ZZ  ->  x  <_  A )
)
3019, 29syl5 32 . . . . . . . 8  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( A  /  x )  e.  NN  ->  x  <_  A )
)
3130pm4.71rd 386 . . . . . . 7  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( A  /  x )  e.  NN  <->  ( x  <_  A  /\  ( A  /  x
)  e.  NN ) ) )
3231anbi2d 451 . . . . . 6  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( 1  < 
x  /\  ( A  /  x )  e.  NN ) 
<->  ( 1  <  x  /\  ( x  <_  A  /\  ( A  /  x
)  e.  NN ) ) ) )
33 3anass 923 . . . . . 6  |-  ( ( 1  <  x  /\  x  <_  A  /\  ( A  /  x )  e.  NN )  <->  ( 1  <  x  /\  (
x  <_  A  /\  ( A  /  x
)  e.  NN ) ) )
3432, 33syl6bbr 196 . . . . 5  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( 1  < 
x  /\  ( A  /  x )  e.  NN ) 
<->  ( 1  <  x  /\  x  <_  A  /\  ( A  /  x
)  e.  NN ) ) )
3518, 34bitr3d 188 . . . 4  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( x  =/=  1  /\  ( A  /  x )  e.  NN )  <->  ( 1  <  x  /\  x  <_  A  /\  ( A  /  x )  e.  NN ) ) )
3635imbi1d 229 . . 3  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( ( x  =/=  1  /\  ( A  /  x )  e.  NN )  ->  x  =  A )  <->  ( (
1  <  x  /\  x  <_  A  /\  ( A  /  x )  e.  NN )  ->  x  =  A ) ) )
3715, 36bitrd 186 . 2  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( ( A  /  x )  e.  NN  ->  ( x  =  1  \/  x  =  A ) )  <->  ( (
1  <  x  /\  x  <_  A  /\  ( A  /  x )  e.  NN )  ->  x  =  A ) ) )
3837ralbidva 2364 1  |-  ( A  e.  NN  ->  ( A. x  e.  NN  ( ( A  /  x )  e.  NN  ->  ( x  =  1  \/  x  =  A ) )  <->  A. x  e.  NN  ( ( 1  <  x  /\  x  <_  A  /\  ( A  /  x )  e.  NN )  ->  x  =  A ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661  DECID wdc 775    /\ w3a 919    = wceq 1284    e. wcel 1433    =/= wne 2245   A.wral 2348   class class class wbr 3785  (class class class)co 5532   RRcr 6980   1c1 6982    < clt 7153    <_ cle 7154    / cdiv 7760   NNcn 8039   ZZcz 8351
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-n0 8289  df-z 8352
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator