ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prsradd Unicode version

Theorem prsradd 6962
Description: Mapping from positive real addition to signed real addition. (Contributed by Jim Kingdon, 29-Jun-2021.)
Assertion
Ref Expression
prsradd  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  [ <. ( ( A  +P.  B )  +P. 
1P ) ,  1P >. ]  ~R  =  ( [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  +R  [ <. ( B  +P.  1P ) ,  1P >. ]  ~R  ) )

Proof of Theorem prsradd
Dummy variables  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1pr 6744 . . . 4  |-  1P  e.  P.
2 addclpr 6727 . . . 4  |-  ( ( A  e.  P.  /\  1P  e.  P. )  -> 
( A  +P.  1P )  e.  P. )
31, 2mpan2 415 . . 3  |-  ( A  e.  P.  ->  ( A  +P.  1P )  e. 
P. )
4 addclpr 6727 . . . 4  |-  ( ( B  e.  P.  /\  1P  e.  P. )  -> 
( B  +P.  1P )  e.  P. )
51, 4mpan2 415 . . 3  |-  ( B  e.  P.  ->  ( B  +P.  1P )  e. 
P. )
6 addsrpr 6922 . . . . 5  |-  ( ( ( ( A  +P.  1P )  e.  P.  /\  1P  e.  P. )  /\  ( ( B  +P.  1P )  e.  P.  /\  1P  e.  P. ) )  ->  ( [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  +R  [ <. ( B  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) ) ,  ( 1P  +P.  1P ) >. ]  ~R  )
71, 6mpanl2 425 . . . 4  |-  ( ( ( A  +P.  1P )  e.  P.  /\  (
( B  +P.  1P )  e.  P.  /\  1P  e.  P. ) )  -> 
( [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  +R  [
<. ( B  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. (
( A  +P.  1P )  +P.  ( B  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  )
81, 7mpanr2 428 . . 3  |-  ( ( ( A  +P.  1P )  e.  P.  /\  ( B  +P.  1P )  e. 
P. )  ->  ( [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  +R  [ <. ( B  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. (
( A  +P.  1P )  +P.  ( B  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  )
93, 5, 8syl2an 283 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  +R  [
<. ( B  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. (
( A  +P.  1P )  +P.  ( B  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  )
10 simpl 107 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A  e.  P. )
111a1i 9 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  1P  e.  P. )
12 simpr 108 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  B  e.  P. )
13 addcomprg 6768 . . . . . . . 8  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  =  ( g  +P.  f ) )
1413adantl 271 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( f  e.  P.  /\  g  e.  P. )
)  ->  ( f  +P.  g )  =  ( g  +P.  f ) )
15 addassprg 6769 . . . . . . . 8  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
( f  +P.  g
)  +P.  h )  =  ( f  +P.  ( g  +P.  h
) ) )
1615adantl 271 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )
)  ->  ( (
f  +P.  g )  +P.  h )  =  ( f  +P.  ( g  +P.  h ) ) )
17 addclpr 6727 . . . . . . . 8  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  e.  P. )
1817adantl 271 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( f  e.  P.  /\  g  e.  P. )
)  ->  ( f  +P.  g )  e.  P. )
1910, 11, 12, 14, 16, 11, 18caov4d 5705 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  =  ( ( A  +P.  B )  +P.  ( 1P  +P.  1P ) ) )
20 addclpr 6727 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  e.  P. )
21 addclpr 6727 . . . . . . . . 9  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  -> 
( 1P  +P.  1P )  e.  P. )
221, 1, 21mp2an 416 . . . . . . . 8  |-  ( 1P 
+P.  1P )  e.  P.
2322a1i 9 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( 1P  +P.  1P )  e.  P. )
24 addcomprg 6768 . . . . . . 7  |-  ( ( ( A  +P.  B
)  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  -> 
( ( A  +P.  B )  +P.  ( 1P 
+P.  1P ) )  =  ( ( 1P  +P.  1P )  +P.  ( A  +P.  B ) ) )
2520, 23, 24syl2anc 403 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  B )  +P.  ( 1P 
+P.  1P ) )  =  ( ( 1P  +P.  1P )  +P.  ( A  +P.  B ) ) )
2619, 25eqtrd 2113 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  =  ( ( 1P 
+P.  1P )  +P.  ( A  +P.  B ) ) )
2726oveq1d 5547 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  1P )  =  ( (
( 1P  +P.  1P )  +P.  ( A  +P.  B ) )  +P.  1P ) )
28 addassprg 6769 . . . . 5  |-  ( ( ( 1P  +P.  1P )  e.  P.  /\  ( A  +P.  B )  e. 
P.  /\  1P  e.  P. )  ->  ( ( ( 1P  +P.  1P )  +P.  ( A  +P.  B ) )  +P.  1P )  =  ( ( 1P  +P.  1P )  +P.  ( ( A  +P.  B )  +P.  1P ) ) )
2923, 20, 11, 28syl3anc 1169 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( 1P 
+P.  1P )  +P.  ( A  +P.  B ) )  +P.  1P )  =  ( ( 1P  +P.  1P )  +P.  ( ( A  +P.  B )  +P.  1P ) ) )
3027, 29eqtrd 2113 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  1P )  =  ( ( 1P  +P.  1P )  +P.  ( ( A  +P.  B )  +P.  1P ) ) )
31 addclpr 6727 . . . . 5  |-  ( ( ( A  +P.  1P )  e.  P.  /\  ( B  +P.  1P )  e. 
P. )  ->  (
( A  +P.  1P )  +P.  ( B  +P.  1P ) )  e.  P. )
323, 5, 31syl2an 283 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  e.  P. )
33 addclpr 6727 . . . . 5  |-  ( ( ( A  +P.  B
)  e.  P.  /\  1P  e.  P. )  -> 
( ( A  +P.  B )  +P.  1P )  e.  P. )
3420, 11, 33syl2anc 403 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  B )  +P.  1P )  e.  P. )
35 enreceq 6913 . . . . . 6  |-  ( ( ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  /\  ( ( ( A  +P.  B )  +P. 
1P )  e.  P.  /\  1P  e.  P. )
)  ->  ( [ <. ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) ) ,  ( 1P  +P.  1P ) >. ]  ~R  =  [ <. ( ( A  +P.  B )  +P. 
1P ) ,  1P >. ]  ~R  <->  ( (
( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  1P )  =  ( ( 1P  +P.  1P )  +P.  ( ( A  +P.  B )  +P.  1P ) ) ) )
361, 35mpanr2 428 . . . . 5  |-  ( ( ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  /\  ( ( A  +P.  B )  +P.  1P )  e.  P. )  -> 
( [ <. (
( A  +P.  1P )  +P.  ( B  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  =  [ <. ( ( A  +P.  B )  +P.  1P ) ,  1P >. ]  ~R  <->  ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  1P )  =  ( ( 1P  +P.  1P )  +P.  ( ( A  +P.  B )  +P.  1P ) ) ) )
3722, 36mpanl2 425 . . . 4  |-  ( ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  e.  P.  /\  (
( A  +P.  B
)  +P.  1P )  e.  P. )  ->  ( [ <. ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  =  [ <. ( ( A  +P.  B )  +P.  1P ) ,  1P >. ]  ~R  <->  ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  1P )  =  ( ( 1P  +P.  1P )  +P.  ( ( A  +P.  B )  +P.  1P ) ) ) )
3832, 34, 37syl2anc 403 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( [ <. (
( A  +P.  1P )  +P.  ( B  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  =  [ <. ( ( A  +P.  B )  +P.  1P ) ,  1P >. ]  ~R  <->  ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  1P )  =  ( ( 1P  +P.  1P )  +P.  ( ( A  +P.  B )  +P.  1P ) ) ) )
3930, 38mpbird 165 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  [ <. ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  =  [ <. ( ( A  +P.  B )  +P.  1P ) ,  1P >. ]  ~R  )
409, 39eqtr2d 2114 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  [ <. ( ( A  +P.  B )  +P. 
1P ) ,  1P >. ]  ~R  =  ( [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  +R  [ <. ( B  +P.  1P ) ,  1P >. ]  ~R  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 919    = wceq 1284    e. wcel 1433   <.cop 3401  (class class class)co 5532   [cec 6127   P.cnp 6481   1Pc1p 6482    +P. cpp 6483    ~R cer 6486    +R cplr 6491
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-i1p 6657  df-iplp 6658  df-enr 6903  df-nr 6904  df-plr 6905
This theorem is referenced by:  caucvgsrlemcau  6969  caucvgsrlemgt1  6971
  Copyright terms: Public domain W3C validator