ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prsradd GIF version

Theorem prsradd 6962
Description: Mapping from positive real addition to signed real addition. (Contributed by Jim Kingdon, 29-Jun-2021.)
Assertion
Ref Expression
prsradd ((𝐴P𝐵P) → [⟨((𝐴 +P 𝐵) +P 1P), 1P⟩] ~R = ([⟨(𝐴 +P 1P), 1P⟩] ~R +R [⟨(𝐵 +P 1P), 1P⟩] ~R ))

Proof of Theorem prsradd
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1pr 6744 . . . 4 1PP
2 addclpr 6727 . . . 4 ((𝐴P ∧ 1PP) → (𝐴 +P 1P) ∈ P)
31, 2mpan2 415 . . 3 (𝐴P → (𝐴 +P 1P) ∈ P)
4 addclpr 6727 . . . 4 ((𝐵P ∧ 1PP) → (𝐵 +P 1P) ∈ P)
51, 4mpan2 415 . . 3 (𝐵P → (𝐵 +P 1P) ∈ P)
6 addsrpr 6922 . . . . 5 ((((𝐴 +P 1P) ∈ P ∧ 1PP) ∧ ((𝐵 +P 1P) ∈ P ∧ 1PP)) → ([⟨(𝐴 +P 1P), 1P⟩] ~R +R [⟨(𝐵 +P 1P), 1P⟩] ~R ) = [⟨((𝐴 +P 1P) +P (𝐵 +P 1P)), (1P +P 1P)⟩] ~R )
71, 6mpanl2 425 . . . 4 (((𝐴 +P 1P) ∈ P ∧ ((𝐵 +P 1P) ∈ P ∧ 1PP)) → ([⟨(𝐴 +P 1P), 1P⟩] ~R +R [⟨(𝐵 +P 1P), 1P⟩] ~R ) = [⟨((𝐴 +P 1P) +P (𝐵 +P 1P)), (1P +P 1P)⟩] ~R )
81, 7mpanr2 428 . . 3 (((𝐴 +P 1P) ∈ P ∧ (𝐵 +P 1P) ∈ P) → ([⟨(𝐴 +P 1P), 1P⟩] ~R +R [⟨(𝐵 +P 1P), 1P⟩] ~R ) = [⟨((𝐴 +P 1P) +P (𝐵 +P 1P)), (1P +P 1P)⟩] ~R )
93, 5, 8syl2an 283 . 2 ((𝐴P𝐵P) → ([⟨(𝐴 +P 1P), 1P⟩] ~R +R [⟨(𝐵 +P 1P), 1P⟩] ~R ) = [⟨((𝐴 +P 1P) +P (𝐵 +P 1P)), (1P +P 1P)⟩] ~R )
10 simpl 107 . . . . . . 7 ((𝐴P𝐵P) → 𝐴P)
111a1i 9 . . . . . . 7 ((𝐴P𝐵P) → 1PP)
12 simpr 108 . . . . . . 7 ((𝐴P𝐵P) → 𝐵P)
13 addcomprg 6768 . . . . . . . 8 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
1413adantl 271 . . . . . . 7 (((𝐴P𝐵P) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
15 addassprg 6769 . . . . . . . 8 ((𝑓P𝑔PP) → ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P )))
1615adantl 271 . . . . . . 7 (((𝐴P𝐵P) ∧ (𝑓P𝑔PP)) → ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P )))
17 addclpr 6727 . . . . . . . 8 ((𝑓P𝑔P) → (𝑓 +P 𝑔) ∈ P)
1817adantl 271 . . . . . . 7 (((𝐴P𝐵P) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) ∈ P)
1910, 11, 12, 14, 16, 11, 18caov4d 5705 . . . . . 6 ((𝐴P𝐵P) → ((𝐴 +P 1P) +P (𝐵 +P 1P)) = ((𝐴 +P 𝐵) +P (1P +P 1P)))
20 addclpr 6727 . . . . . . 7 ((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ P)
21 addclpr 6727 . . . . . . . . 9 ((1PP ∧ 1PP) → (1P +P 1P) ∈ P)
221, 1, 21mp2an 416 . . . . . . . 8 (1P +P 1P) ∈ P
2322a1i 9 . . . . . . 7 ((𝐴P𝐵P) → (1P +P 1P) ∈ P)
24 addcomprg 6768 . . . . . . 7 (((𝐴 +P 𝐵) ∈ P ∧ (1P +P 1P) ∈ P) → ((𝐴 +P 𝐵) +P (1P +P 1P)) = ((1P +P 1P) +P (𝐴 +P 𝐵)))
2520, 23, 24syl2anc 403 . . . . . 6 ((𝐴P𝐵P) → ((𝐴 +P 𝐵) +P (1P +P 1P)) = ((1P +P 1P) +P (𝐴 +P 𝐵)))
2619, 25eqtrd 2113 . . . . 5 ((𝐴P𝐵P) → ((𝐴 +P 1P) +P (𝐵 +P 1P)) = ((1P +P 1P) +P (𝐴 +P 𝐵)))
2726oveq1d 5547 . . . 4 ((𝐴P𝐵P) → (((𝐴 +P 1P) +P (𝐵 +P 1P)) +P 1P) = (((1P +P 1P) +P (𝐴 +P 𝐵)) +P 1P))
28 addassprg 6769 . . . . 5 (((1P +P 1P) ∈ P ∧ (𝐴 +P 𝐵) ∈ P ∧ 1PP) → (((1P +P 1P) +P (𝐴 +P 𝐵)) +P 1P) = ((1P +P 1P) +P ((𝐴 +P 𝐵) +P 1P)))
2923, 20, 11, 28syl3anc 1169 . . . 4 ((𝐴P𝐵P) → (((1P +P 1P) +P (𝐴 +P 𝐵)) +P 1P) = ((1P +P 1P) +P ((𝐴 +P 𝐵) +P 1P)))
3027, 29eqtrd 2113 . . 3 ((𝐴P𝐵P) → (((𝐴 +P 1P) +P (𝐵 +P 1P)) +P 1P) = ((1P +P 1P) +P ((𝐴 +P 𝐵) +P 1P)))
31 addclpr 6727 . . . . 5 (((𝐴 +P 1P) ∈ P ∧ (𝐵 +P 1P) ∈ P) → ((𝐴 +P 1P) +P (𝐵 +P 1P)) ∈ P)
323, 5, 31syl2an 283 . . . 4 ((𝐴P𝐵P) → ((𝐴 +P 1P) +P (𝐵 +P 1P)) ∈ P)
33 addclpr 6727 . . . . 5 (((𝐴 +P 𝐵) ∈ P ∧ 1PP) → ((𝐴 +P 𝐵) +P 1P) ∈ P)
3420, 11, 33syl2anc 403 . . . 4 ((𝐴P𝐵P) → ((𝐴 +P 𝐵) +P 1P) ∈ P)
35 enreceq 6913 . . . . . 6 (((((𝐴 +P 1P) +P (𝐵 +P 1P)) ∈ P ∧ (1P +P 1P) ∈ P) ∧ (((𝐴 +P 𝐵) +P 1P) ∈ P ∧ 1PP)) → ([⟨((𝐴 +P 1P) +P (𝐵 +P 1P)), (1P +P 1P)⟩] ~R = [⟨((𝐴 +P 𝐵) +P 1P), 1P⟩] ~R ↔ (((𝐴 +P 1P) +P (𝐵 +P 1P)) +P 1P) = ((1P +P 1P) +P ((𝐴 +P 𝐵) +P 1P))))
361, 35mpanr2 428 . . . . 5 (((((𝐴 +P 1P) +P (𝐵 +P 1P)) ∈ P ∧ (1P +P 1P) ∈ P) ∧ ((𝐴 +P 𝐵) +P 1P) ∈ P) → ([⟨((𝐴 +P 1P) +P (𝐵 +P 1P)), (1P +P 1P)⟩] ~R = [⟨((𝐴 +P 𝐵) +P 1P), 1P⟩] ~R ↔ (((𝐴 +P 1P) +P (𝐵 +P 1P)) +P 1P) = ((1P +P 1P) +P ((𝐴 +P 𝐵) +P 1P))))
3722, 36mpanl2 425 . . . 4 ((((𝐴 +P 1P) +P (𝐵 +P 1P)) ∈ P ∧ ((𝐴 +P 𝐵) +P 1P) ∈ P) → ([⟨((𝐴 +P 1P) +P (𝐵 +P 1P)), (1P +P 1P)⟩] ~R = [⟨((𝐴 +P 𝐵) +P 1P), 1P⟩] ~R ↔ (((𝐴 +P 1P) +P (𝐵 +P 1P)) +P 1P) = ((1P +P 1P) +P ((𝐴 +P 𝐵) +P 1P))))
3832, 34, 37syl2anc 403 . . 3 ((𝐴P𝐵P) → ([⟨((𝐴 +P 1P) +P (𝐵 +P 1P)), (1P +P 1P)⟩] ~R = [⟨((𝐴 +P 𝐵) +P 1P), 1P⟩] ~R ↔ (((𝐴 +P 1P) +P (𝐵 +P 1P)) +P 1P) = ((1P +P 1P) +P ((𝐴 +P 𝐵) +P 1P))))
3930, 38mpbird 165 . 2 ((𝐴P𝐵P) → [⟨((𝐴 +P 1P) +P (𝐵 +P 1P)), (1P +P 1P)⟩] ~R = [⟨((𝐴 +P 𝐵) +P 1P), 1P⟩] ~R )
409, 39eqtr2d 2114 1 ((𝐴P𝐵P) → [⟨((𝐴 +P 𝐵) +P 1P), 1P⟩] ~R = ([⟨(𝐴 +P 1P), 1P⟩] ~R +R [⟨(𝐵 +P 1P), 1P⟩] ~R ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 919   = wceq 1284  wcel 1433  cop 3401  (class class class)co 5532  [cec 6127  Pcnp 6481  1Pc1p 6482   +P cpp 6483   ~R cer 6486   +R cplr 6491
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-i1p 6657  df-iplp 6658  df-enr 6903  df-nr 6904  df-plr 6905
This theorem is referenced by:  caucvgsrlemcau  6969  caucvgsrlemgt1  6971
  Copyright terms: Public domain W3C validator