ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem3a Unicode version

Theorem tfrlem3a 5948
Description: Lemma for transfinite recursion. Let  A be the class of "acceptable" functions. The final thing we're interested in is the union of all these acceptable functions. This lemma just changes some bound variables in  A for later use. (Contributed by NM, 9-Apr-1995.)
Hypotheses
Ref Expression
tfrlem3.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
tfrlem3.2  |-  G  e. 
_V
Assertion
Ref Expression
tfrlem3a  |-  ( G  e.  A  <->  E. z  e.  On  ( G  Fn  z  /\  A. w  e.  z  ( G `  w )  =  ( F `  ( G  |`  w ) ) ) )
Distinct variable groups:    w, f, x, y, z, F    f, G, w, x, y, z
Allowed substitution hints:    A( x, y, z, w, f)

Proof of Theorem tfrlem3a
StepHypRef Expression
1 tfrlem3.2 . 2  |-  G  e. 
_V
2 fneq12 5012 . . . 4  |-  ( ( f  =  G  /\  x  =  z )  ->  ( f  Fn  x  <->  G  Fn  z ) )
3 simpll 495 . . . . . . 7  |-  ( ( ( f  =  G  /\  x  =  z )  /\  y  =  w )  ->  f  =  G )
4 simpr 108 . . . . . . 7  |-  ( ( ( f  =  G  /\  x  =  z )  /\  y  =  w )  ->  y  =  w )
53, 4fveq12d 5204 . . . . . 6  |-  ( ( ( f  =  G  /\  x  =  z )  /\  y  =  w )  ->  (
f `  y )  =  ( G `  w ) )
63, 4reseq12d 4631 . . . . . . 7  |-  ( ( ( f  =  G  /\  x  =  z )  /\  y  =  w )  ->  (
f  |`  y )  =  ( G  |`  w
) )
76fveq2d 5202 . . . . . 6  |-  ( ( ( f  =  G  /\  x  =  z )  /\  y  =  w )  ->  ( F `  ( f  |`  y ) )  =  ( F `  ( G  |`  w ) ) )
85, 7eqeq12d 2095 . . . . 5  |-  ( ( ( f  =  G  /\  x  =  z )  /\  y  =  w )  ->  (
( f `  y
)  =  ( F `
 ( f  |`  y ) )  <->  ( G `  w )  =  ( F `  ( G  |`  w ) ) ) )
9 simpr 108 . . . . . 6  |-  ( ( f  =  G  /\  x  =  z )  ->  x  =  z )
109adantr 270 . . . . 5  |-  ( ( ( f  =  G  /\  x  =  z )  /\  y  =  w )  ->  x  =  z )
118, 10cbvraldva2 2581 . . . 4  |-  ( ( f  =  G  /\  x  =  z )  ->  ( A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) )  <->  A. w  e.  z  ( G `  w )  =  ( F `  ( G  |`  w ) ) ) )
122, 11anbi12d 456 . . 3  |-  ( ( f  =  G  /\  x  =  z )  ->  ( ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) )  <-> 
( G  Fn  z  /\  A. w  e.  z  ( G `  w
)  =  ( F `
 ( G  |`  w ) ) ) ) )
1312cbvrexdva 2584 . 2  |-  ( f  =  G  ->  ( E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  y ) ) )  <->  E. z  e.  On  ( G  Fn  z  /\  A. w  e.  z  ( G `  w
)  =  ( F `
 ( G  |`  w ) ) ) ) )
14 tfrlem3.1 . 2  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
151, 13, 14elab2 2741 1  |-  ( G  e.  A  <->  E. z  e.  On  ( G  Fn  z  /\  A. w  e.  z  ( G `  w )  =  ( F `  ( G  |`  w ) ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   {cab 2067   A.wral 2348   E.wrex 2349   _Vcvv 2601   Oncon0 4118    |` cres 4365    Fn wfn 4917   ` cfv 4922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-res 4375  df-iota 4887  df-fun 4924  df-fn 4925  df-fv 4930
This theorem is referenced by:  tfrlem3  5949  tfrlem5  5953  tfrlemisucaccv  5962  tfrlemibxssdm  5964  tfrlemi14d  5970  tfrexlem  5971
  Copyright terms: Public domain W3C validator