| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrltnsym | Unicode version | ||
| Description: Ordering on the extended reals is not symmetric. (Contributed by NM, 15-Oct-2005.) |
| Ref | Expression |
|---|---|
| xrltnsym |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 8850 |
. 2
| |
| 2 | elxr 8850 |
. 2
| |
| 3 | ltnsym 7197 |
. . . 4
| |
| 4 | rexr 7164 |
. . . . . . . 8
| |
| 5 | pnfnlt 8862 |
. . . . . . . 8
| |
| 6 | 4, 5 | syl 14 |
. . . . . . 7
|
| 7 | 6 | adantr 270 |
. . . . . 6
|
| 8 | breq1 3788 |
. . . . . . 7
| |
| 9 | 8 | adantl 271 |
. . . . . 6
|
| 10 | 7, 9 | mtbird 630 |
. . . . 5
|
| 11 | 10 | a1d 22 |
. . . 4
|
| 12 | nltmnf 8863 |
. . . . . . . 8
| |
| 13 | 4, 12 | syl 14 |
. . . . . . 7
|
| 14 | 13 | adantr 270 |
. . . . . 6
|
| 15 | breq2 3789 |
. . . . . . 7
| |
| 16 | 15 | adantl 271 |
. . . . . 6
|
| 17 | 14, 16 | mtbird 630 |
. . . . 5
|
| 18 | 17 | pm2.21d 581 |
. . . 4
|
| 19 | 3, 11, 18 | 3jaodan 1237 |
. . 3
|
| 20 | pnfnlt 8862 |
. . . . . . 7
| |
| 21 | 20 | adantl 271 |
. . . . . 6
|
| 22 | breq1 3788 |
. . . . . . 7
| |
| 23 | 22 | adantr 270 |
. . . . . 6
|
| 24 | 21, 23 | mtbird 630 |
. . . . 5
|
| 25 | 24 | pm2.21d 581 |
. . . 4
|
| 26 | 2, 25 | sylan2br 282 |
. . 3
|
| 27 | rexr 7164 |
. . . . . . . 8
| |
| 28 | nltmnf 8863 |
. . . . . . . 8
| |
| 29 | 27, 28 | syl 14 |
. . . . . . 7
|
| 30 | 29 | adantl 271 |
. . . . . 6
|
| 31 | breq2 3789 |
. . . . . . 7
| |
| 32 | 31 | adantr 270 |
. . . . . 6
|
| 33 | 30, 32 | mtbird 630 |
. . . . 5
|
| 34 | 33 | a1d 22 |
. . . 4
|
| 35 | mnfxr 8848 |
. . . . . . . 8
| |
| 36 | pnfnlt 8862 |
. . . . . . . 8
| |
| 37 | 35, 36 | ax-mp 7 |
. . . . . . 7
|
| 38 | breq12 3790 |
. . . . . . 7
| |
| 39 | 37, 38 | mtbiri 632 |
. . . . . 6
|
| 40 | 39 | ancoms 264 |
. . . . 5
|
| 41 | 40 | a1d 22 |
. . . 4
|
| 42 | xrltnr 8855 |
. . . . . . 7
| |
| 43 | 35, 42 | ax-mp 7 |
. . . . . 6
|
| 44 | breq12 3790 |
. . . . . 6
| |
| 45 | 43, 44 | mtbiri 632 |
. . . . 5
|
| 46 | 45 | pm2.21d 581 |
. . . 4
|
| 47 | 34, 41, 46 | 3jaodan 1237 |
. . 3
|
| 48 | 19, 26, 47 | 3jaoian 1236 |
. 2
|
| 49 | 1, 2, 48 | syl2anb 285 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-pre-ltirr 7088 ax-pre-lttrn 7090 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-xp 4369 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 |
| This theorem is referenced by: xrltnsym2 8869 xrltle 8873 |
| Copyright terms: Public domain | W3C validator |