ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrrebnd Unicode version

Theorem xrrebnd 8886
Description: An extended real is real iff it is strictly bounded by infinities. (Contributed by NM, 2-Feb-2006.)
Assertion
Ref Expression
xrrebnd  |-  ( A  e.  RR*  ->  ( A  e.  RR  <->  ( -oo  <  A  /\  A  < +oo ) ) )

Proof of Theorem xrrebnd
StepHypRef Expression
1 elxr 8850 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 id 19 . . . 4  |-  ( A  e.  RR  ->  A  e.  RR )
3 mnflt 8858 . . . . 5  |-  ( A  e.  RR  -> -oo  <  A )
4 ltpnf 8856 . . . . 5  |-  ( A  e.  RR  ->  A  < +oo )
53, 4jca 300 . . . 4  |-  ( A  e.  RR  ->  ( -oo  <  A  /\  A  < +oo ) )
62, 52thd 173 . . 3  |-  ( A  e.  RR  ->  ( A  e.  RR  <->  ( -oo  <  A  /\  A  < +oo ) ) )
7 renepnf 7166 . . . . 5  |-  ( A  e.  RR  ->  A  =/= +oo )
87necon2bi 2300 . . . 4  |-  ( A  = +oo  ->  -.  A  e.  RR )
9 pnfxr 8846 . . . . . . 7  |- +oo  e.  RR*
10 xrltnr 8855 . . . . . . 7  |-  ( +oo  e.  RR*  ->  -. +oo  < +oo )
119, 10ax-mp 7 . . . . . 6  |-  -. +oo  < +oo
12 breq1 3788 . . . . . 6  |-  ( A  = +oo  ->  ( A  < +oo  <-> +oo  < +oo )
)
1311, 12mtbiri 632 . . . . 5  |-  ( A  = +oo  ->  -.  A  < +oo )
1413intnand 873 . . . 4  |-  ( A  = +oo  ->  -.  ( -oo  <  A  /\  A  < +oo ) )
158, 142falsed 650 . . 3  |-  ( A  = +oo  ->  ( A  e.  RR  <->  ( -oo  <  A  /\  A  < +oo ) ) )
16 renemnf 7167 . . . . 5  |-  ( A  e.  RR  ->  A  =/= -oo )
1716necon2bi 2300 . . . 4  |-  ( A  = -oo  ->  -.  A  e.  RR )
18 mnfxr 8848 . . . . . . 7  |- -oo  e.  RR*
19 xrltnr 8855 . . . . . . 7  |-  ( -oo  e.  RR*  ->  -. -oo  < -oo )
2018, 19ax-mp 7 . . . . . 6  |-  -. -oo  < -oo
21 breq2 3789 . . . . . 6  |-  ( A  = -oo  ->  ( -oo  <  A  <-> -oo  < -oo ) )
2220, 21mtbiri 632 . . . . 5  |-  ( A  = -oo  ->  -. -oo 
<  A )
2322intnanrd 874 . . . 4  |-  ( A  = -oo  ->  -.  ( -oo  <  A  /\  A  < +oo ) )
2417, 232falsed 650 . . 3  |-  ( A  = -oo  ->  ( A  e.  RR  <->  ( -oo  <  A  /\  A  < +oo ) ) )
256, 15, 243jaoi 1234 . 2  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  ->  ( A  e.  RR  <->  ( -oo  <  A  /\  A  < +oo ) ) )
261, 25sylbi 119 1  |-  ( A  e.  RR*  ->  ( A  e.  RR  <->  ( -oo  <  A  /\  A  < +oo ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ w3o 918    = wceq 1284    e. wcel 1433   class class class wbr 3785   RRcr 6980   +oocpnf 7150   -oocmnf 7151   RR*cxr 7152    < clt 7153
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-pre-ltirr 7088
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-xp 4369  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158
This theorem is referenced by:  xrre  8887  xrre2  8888  xrre3  8889  elioc2  8959  elico2  8960  elicc2  8961
  Copyright terms: Public domain W3C validator