![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0nn0 | GIF version |
Description: 0 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
0nn0 | ⊢ 0 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2081 | . 2 ⊢ 0 = 0 | |
2 | elnn0 8290 | . . . 4 ⊢ (0 ∈ ℕ0 ↔ (0 ∈ ℕ ∨ 0 = 0)) | |
3 | 2 | biimpri 131 | . . 3 ⊢ ((0 ∈ ℕ ∨ 0 = 0) → 0 ∈ ℕ0) |
4 | 3 | olcs 687 | . 2 ⊢ (0 = 0 → 0 ∈ ℕ0) |
5 | 1, 4 | ax-mp 7 | 1 ⊢ 0 ∈ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∨ wo 661 = wceq 1284 ∈ wcel 1433 0cc0 6981 ℕcn 8039 ℕ0cn0 8288 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-1cn 7069 ax-icn 7071 ax-addcl 7072 ax-mulcl 7074 ax-i2m1 7081 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-sn 3404 df-n0 8289 |
This theorem is referenced by: elnn0z 8364 nn0ind-raph 8464 10nn0 8494 declei 8512 numlti 8513 nummul1c 8525 decaddc2 8532 decrmanc 8533 decrmac 8534 decaddm10 8535 decaddi 8536 decaddci 8537 decaddci2 8538 decmul1 8540 decmulnc 8543 6p5e11 8549 7p4e11 8552 8p3e11 8557 9p2e11 8563 10p10e20 8571 0elfz 9132 4fvwrd4 9150 fvinim0ffz 9250 exple1 9532 sq10 9640 bc0k 9683 bcn1 9685 bccl 9694 fz01or 10278 nn0o 10307 ndvdssub 10330 gcdval 10351 gcdcl 10358 dfgcd3 10399 nn0seqcvgd 10423 ialgcvg 10430 eucialg 10441 lcmcl 10454 pw2dvdslemn 10543 1kp2ke3k 10562 ex-fac 10565 |
Copyright terms: Public domain | W3C validator |