ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ndvdssub GIF version

Theorem ndvdssub 10330
Description: Corollary of the division algorithm. If an integer 𝐷 greater than 1 divides 𝑁, then it does not divide any of 𝑁 − 1, 𝑁 − 2... 𝑁 − (𝐷 − 1). (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
ndvdssub ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁𝐾)))

Proof of Theorem ndvdssub
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnn0 8295 . . . . . . . 8 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
2 nnne0 8067 . . . . . . . 8 (𝐾 ∈ ℕ → 𝐾 ≠ 0)
31, 2jca 300 . . . . . . 7 (𝐾 ∈ ℕ → (𝐾 ∈ ℕ0𝐾 ≠ 0))
4 df-ne 2246 . . . . . . . . . . . 12 (𝐾 ≠ 0 ↔ ¬ 𝐾 = 0)
54anbi2i 444 . . . . . . . . . . 11 ((𝐾 < 𝐷𝐾 ≠ 0) ↔ (𝐾 < 𝐷 ∧ ¬ 𝐾 = 0))
6 divalg2 10326 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃!𝑟 ∈ ℕ0 (𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)))
7 breq1 3788 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 𝑥 → (𝑟 < 𝐷𝑥 < 𝐷))
8 oveq2 5540 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 = 𝑥 → (𝑁𝑟) = (𝑁𝑥))
98breq2d 3797 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 𝑥 → (𝐷 ∥ (𝑁𝑟) ↔ 𝐷 ∥ (𝑁𝑥)))
107, 9anbi12d 456 . . . . . . . . . . . . . . . . . . . 20 (𝑟 = 𝑥 → ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ↔ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))))
1110reu4 2786 . . . . . . . . . . . . . . . . . . 19 (∃!𝑟 ∈ ℕ0 (𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ↔ (∃𝑟 ∈ ℕ0 (𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ ∀𝑟 ∈ ℕ0𝑥 ∈ ℕ0 (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥)))
126, 11sylib 120 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (∃𝑟 ∈ ℕ0 (𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ ∀𝑟 ∈ ℕ0𝑥 ∈ ℕ0 (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥)))
13 nngt0 8064 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐷 ∈ ℕ → 0 < 𝐷)
14133ad2ant2 960 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → 0 < 𝐷)
15 zcn 8356 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1615subid1d 7408 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℤ → (𝑁 − 0) = 𝑁)
1716breq2d 3797 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℤ → (𝐷 ∥ (𝑁 − 0) ↔ 𝐷𝑁))
1817biimpar 291 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℤ ∧ 𝐷𝑁) → 𝐷 ∥ (𝑁 − 0))
19183adant2 957 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → 𝐷 ∥ (𝑁 − 0))
2014, 19jca 300 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (0 < 𝐷𝐷 ∥ (𝑁 − 0)))
21203expa 1138 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) → (0 < 𝐷𝐷 ∥ (𝑁 − 0)))
2221anim2i 334 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁)) → ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (0 < 𝐷𝐷 ∥ (𝑁 − 0))))
2322ancoms 264 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) ∧ (𝑟 < 𝐷𝐷 ∥ (𝑁𝑟))) → ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (0 < 𝐷𝐷 ∥ (𝑁 − 0))))
24 0nn0 8303 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℕ0
25 breq1 3788 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 0 → (𝑥 < 𝐷 ↔ 0 < 𝐷))
26 oveq2 5540 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = 0 → (𝑁𝑥) = (𝑁 − 0))
2726breq2d 3797 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 0 → (𝐷 ∥ (𝑁𝑥) ↔ 𝐷 ∥ (𝑁 − 0)))
2825, 27anbi12d 456 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 0 → ((𝑥 < 𝐷𝐷 ∥ (𝑁𝑥)) ↔ (0 < 𝐷𝐷 ∥ (𝑁 − 0))))
2928anbi2d 451 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 0 → (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) ↔ ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (0 < 𝐷𝐷 ∥ (𝑁 − 0)))))
30 eqeq2 2090 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 0 → (𝑟 = 𝑥𝑟 = 0))
3129, 30imbi12d 232 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 0 → ((((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥) ↔ (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (0 < 𝐷𝐷 ∥ (𝑁 − 0))) → 𝑟 = 0)))
3231rspcv 2697 . . . . . . . . . . . . . . . . . . . . . 22 (0 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥) → (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (0 < 𝐷𝐷 ∥ (𝑁 − 0))) → 𝑟 = 0)))
3324, 32ax-mp 7 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑥 ∈ ℕ0 (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥) → (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (0 < 𝐷𝐷 ∥ (𝑁 − 0))) → 𝑟 = 0))
3423, 33syl5 32 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥 ∈ ℕ0 (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥) → ((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) ∧ (𝑟 < 𝐷𝐷 ∥ (𝑁𝑟))) → 𝑟 = 0))
3534expd 254 . . . . . . . . . . . . . . . . . . 19 (∀𝑥 ∈ ℕ0 (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥) → (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) → ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0)))
3635ralimi 2426 . . . . . . . . . . . . . . . . . 18 (∀𝑟 ∈ ℕ0𝑥 ∈ ℕ0 (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥) → ∀𝑟 ∈ ℕ0 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) → ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0)))
3712, 36simpl2im 378 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∀𝑟 ∈ ℕ0 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) → ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0)))
38 r19.21v 2438 . . . . . . . . . . . . . . . . 17 (∀𝑟 ∈ ℕ0 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) → ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0)) ↔ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) → ∀𝑟 ∈ ℕ0 ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0)))
3937, 38sylib 120 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) → ∀𝑟 ∈ ℕ0 ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0)))
4039expd 254 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷𝑁 → ∀𝑟 ∈ ℕ0 ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0))))
4140pm2.43i 48 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷𝑁 → ∀𝑟 ∈ ℕ0 ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0)))
42413impia 1135 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → ∀𝑟 ∈ ℕ0 ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0))
43 breq1 3788 . . . . . . . . . . . . . . . 16 (𝑟 = 𝐾 → (𝑟 < 𝐷𝐾 < 𝐷))
44 oveq2 5540 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝐾 → (𝑁𝑟) = (𝑁𝐾))
4544breq2d 3797 . . . . . . . . . . . . . . . 16 (𝑟 = 𝐾 → (𝐷 ∥ (𝑁𝑟) ↔ 𝐷 ∥ (𝑁𝐾)))
4643, 45anbi12d 456 . . . . . . . . . . . . . . 15 (𝑟 = 𝐾 → ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ↔ (𝐾 < 𝐷𝐷 ∥ (𝑁𝐾))))
47 eqeq1 2087 . . . . . . . . . . . . . . 15 (𝑟 = 𝐾 → (𝑟 = 0 ↔ 𝐾 = 0))
4846, 47imbi12d 232 . . . . . . . . . . . . . 14 (𝑟 = 𝐾 → (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0) ↔ ((𝐾 < 𝐷𝐷 ∥ (𝑁𝐾)) → 𝐾 = 0)))
4948rspcv 2697 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0 → (∀𝑟 ∈ ℕ0 ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0) → ((𝐾 < 𝐷𝐷 ∥ (𝑁𝐾)) → 𝐾 = 0)))
5042, 49syl5com 29 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (𝐾 ∈ ℕ0 → ((𝐾 < 𝐷𝐷 ∥ (𝑁𝐾)) → 𝐾 = 0)))
51 pm3.37 821 . . . . . . . . . . . 12 (((𝐾 < 𝐷𝐷 ∥ (𝑁𝐾)) → 𝐾 = 0) → ((𝐾 < 𝐷 ∧ ¬ 𝐾 = 0) → ¬ 𝐷 ∥ (𝑁𝐾)))
5250, 51syl6 33 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (𝐾 ∈ ℕ0 → ((𝐾 < 𝐷 ∧ ¬ 𝐾 = 0) → ¬ 𝐷 ∥ (𝑁𝐾))))
535, 52syl7bi 163 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (𝐾 ∈ ℕ0 → ((𝐾 < 𝐷𝐾 ≠ 0) → ¬ 𝐷 ∥ (𝑁𝐾))))
5453exp4a 358 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (𝐾 ∈ ℕ0 → (𝐾 < 𝐷 → (𝐾 ≠ 0 → ¬ 𝐷 ∥ (𝑁𝐾)))))
5554com23 77 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (𝐾 < 𝐷 → (𝐾 ∈ ℕ0 → (𝐾 ≠ 0 → ¬ 𝐷 ∥ (𝑁𝐾)))))
5655imp4a 341 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (𝐾 < 𝐷 → ((𝐾 ∈ ℕ0𝐾 ≠ 0) → ¬ 𝐷 ∥ (𝑁𝐾))))
573, 56syl7 68 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (𝐾 < 𝐷 → (𝐾 ∈ ℕ → ¬ 𝐷 ∥ (𝑁𝐾))))
5857com23 77 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (𝐾 ∈ ℕ → (𝐾 < 𝐷 → ¬ 𝐷 ∥ (𝑁𝐾))))
5958impd 251 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → ((𝐾 ∈ ℕ ∧ 𝐾 < 𝐷) → ¬ 𝐷 ∥ (𝑁𝐾)))
60593expia 1140 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷𝑁 → ((𝐾 ∈ ℕ ∧ 𝐾 < 𝐷) → ¬ 𝐷 ∥ (𝑁𝐾))))
6160com23 77 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ((𝐾 ∈ ℕ ∧ 𝐾 < 𝐷) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁𝐾))))
62613impia 1135 1 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁𝐾)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  w3a 919   = wceq 1284  wcel 1433  wne 2245  wral 2348  wrex 2349  ∃!wreu 2350   class class class wbr 3785  (class class class)co 5532  0cc0 6981   < clt 7153  cmin 7279  cn 8039  0cn0 8288  cz 8351  cdvds 10195
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735  df-fl 9274  df-mod 9325  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885  df-dvds 10196
This theorem is referenced by:  ndvdsadd  10331
  Copyright terms: Public domain W3C validator