| Step | Hyp | Ref
| Expression |
| 1 | | nn0uz 8653 |
. . . . . . . 8
⊢
ℕ0 = (ℤ≥‘0) |
| 2 | | eucialg.2 |
. . . . . . . 8
⊢ 𝑅 = seq0((𝐸 ∘ 1st ),
(ℕ0 × {𝐴}), (ℕ0 ×
ℕ0)) |
| 3 | | 0zd 8363 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → 0 ∈ ℤ) |
| 4 | | eucialg.3 |
. . . . . . . . 9
⊢ 𝐴 = 〈𝑀, 𝑁〉 |
| 5 | | opelxpi 4394 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → 〈𝑀, 𝑁〉 ∈ (ℕ0 ×
ℕ0)) |
| 6 | 4, 5 | syl5eqel 2165 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → 𝐴 ∈ (ℕ0 ×
ℕ0)) |
| 7 | | eucalgval.1 |
. . . . . . . . . 10
⊢ 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0
↦ if(𝑦 = 0,
〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉)) |
| 8 | 7 | eucalgf 10437 |
. . . . . . . . 9
⊢ 𝐸:(ℕ0 ×
ℕ0)⟶(ℕ0 ×
ℕ0) |
| 9 | 8 | a1i 9 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → 𝐸:(ℕ0 ×
ℕ0)⟶(ℕ0 ×
ℕ0)) |
| 10 | | nn0ex 8294 |
. . . . . . . . . 10
⊢
ℕ0 ∈ V |
| 11 | 10, 10 | xpex 4471 |
. . . . . . . . 9
⊢
(ℕ0 × ℕ0) ∈
V |
| 12 | 11 | a1i 9 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (ℕ0 × ℕ0)
∈ V) |
| 13 | 1, 2, 3, 6, 9, 12 | ialgrf 10427 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → 𝑅:ℕ0⟶(ℕ0
× ℕ0)) |
| 14 | | ffvelrn 5321 |
. . . . . . 7
⊢ ((𝑅:ℕ0⟶(ℕ0
× ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝑅‘𝑁) ∈ (ℕ0 ×
ℕ0)) |
| 15 | 13, 14 | sylancom 411 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑅‘𝑁) ∈ (ℕ0 ×
ℕ0)) |
| 16 | | 1st2nd2 5821 |
. . . . . 6
⊢ ((𝑅‘𝑁) ∈ (ℕ0 ×
ℕ0) → (𝑅‘𝑁) = 〈(1st ‘(𝑅‘𝑁)), (2nd ‘(𝑅‘𝑁))〉) |
| 17 | 15, 16 | syl 14 |
. . . . 5
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑅‘𝑁) = 〈(1st ‘(𝑅‘𝑁)), (2nd ‘(𝑅‘𝑁))〉) |
| 18 | 17 | fveq2d 5202 |
. . . 4
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ( gcd ‘(𝑅‘𝑁)) = ( gcd ‘〈(1st
‘(𝑅‘𝑁)), (2nd
‘(𝑅‘𝑁))〉)) |
| 19 | | df-ov 5535 |
. . . 4
⊢
((1st ‘(𝑅‘𝑁)) gcd (2nd ‘(𝑅‘𝑁))) = ( gcd ‘〈(1st
‘(𝑅‘𝑁)), (2nd
‘(𝑅‘𝑁))〉) |
| 20 | 18, 19 | syl6eqr 2131 |
. . 3
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ( gcd ‘(𝑅‘𝑁)) = ((1st ‘(𝑅‘𝑁)) gcd (2nd ‘(𝑅‘𝑁)))) |
| 21 | 4 | fveq2i 5201 |
. . . . . . . 8
⊢
(2nd ‘𝐴) = (2nd ‘〈𝑀, 𝑁〉) |
| 22 | | op2ndg 5798 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (2nd ‘〈𝑀, 𝑁〉) = 𝑁) |
| 23 | 21, 22 | syl5eq 2125 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (2nd ‘𝐴) = 𝑁) |
| 24 | 23 | fveq2d 5202 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑅‘(2nd ‘𝐴)) = (𝑅‘𝑁)) |
| 25 | 24 | fveq2d 5202 |
. . . . 5
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (2nd ‘(𝑅‘(2nd ‘𝐴))) = (2nd
‘(𝑅‘𝑁))) |
| 26 | | xp2nd 5813 |
. . . . . . . . 9
⊢ (𝐴 ∈ (ℕ0
× ℕ0) → (2nd ‘𝐴) ∈
ℕ0) |
| 27 | 26 | nn0zd 8467 |
. . . . . . . 8
⊢ (𝐴 ∈ (ℕ0
× ℕ0) → (2nd ‘𝐴) ∈ ℤ) |
| 28 | | uzid 8633 |
. . . . . . . 8
⊢
((2nd ‘𝐴) ∈ ℤ → (2nd
‘𝐴) ∈
(ℤ≥‘(2nd ‘𝐴))) |
| 29 | 27, 28 | syl 14 |
. . . . . . 7
⊢ (𝐴 ∈ (ℕ0
× ℕ0) → (2nd ‘𝐴) ∈
(ℤ≥‘(2nd ‘𝐴))) |
| 30 | | eqid 2081 |
. . . . . . . 8
⊢
(2nd ‘𝐴) = (2nd ‘𝐴) |
| 31 | 7, 2, 30 | eucialgcvga 10440 |
. . . . . . 7
⊢ (𝐴 ∈ (ℕ0
× ℕ0) → ((2nd ‘𝐴) ∈
(ℤ≥‘(2nd ‘𝐴)) → (2nd ‘(𝑅‘(2nd
‘𝐴))) =
0)) |
| 32 | 29, 31 | mpd 13 |
. . . . . 6
⊢ (𝐴 ∈ (ℕ0
× ℕ0) → (2nd ‘(𝑅‘(2nd ‘𝐴))) = 0) |
| 33 | 6, 32 | syl 14 |
. . . . 5
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (2nd ‘(𝑅‘(2nd ‘𝐴))) = 0) |
| 34 | 25, 33 | eqtr3d 2115 |
. . . 4
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (2nd ‘(𝑅‘𝑁)) = 0) |
| 35 | 34 | oveq2d 5548 |
. . 3
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((1st ‘(𝑅‘𝑁)) gcd (2nd ‘(𝑅‘𝑁))) = ((1st ‘(𝑅‘𝑁)) gcd 0)) |
| 36 | | xp1st 5812 |
. . . 4
⊢ ((𝑅‘𝑁) ∈ (ℕ0 ×
ℕ0) → (1st ‘(𝑅‘𝑁)) ∈
ℕ0) |
| 37 | | nn0gcdid0 10372 |
. . . 4
⊢
((1st ‘(𝑅‘𝑁)) ∈ ℕ0 →
((1st ‘(𝑅‘𝑁)) gcd 0) = (1st ‘(𝑅‘𝑁))) |
| 38 | 15, 36, 37 | 3syl 17 |
. . 3
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((1st ‘(𝑅‘𝑁)) gcd 0) = (1st ‘(𝑅‘𝑁))) |
| 39 | 20, 35, 38 | 3eqtrrd 2118 |
. 2
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (1st ‘(𝑅‘𝑁)) = ( gcd ‘(𝑅‘𝑁))) |
| 40 | | gcdf 10364 |
. . . . . . 7
⊢ gcd
:(ℤ × ℤ)⟶ℕ0 |
| 41 | | ffn 5066 |
. . . . . . 7
⊢ ( gcd
:(ℤ × ℤ)⟶ℕ0 → gcd Fn (ℤ
× ℤ)) |
| 42 | 40, 41 | ax-mp 7 |
. . . . . 6
⊢ gcd Fn
(ℤ × ℤ) |
| 43 | | nn0ssz 8369 |
. . . . . . 7
⊢
ℕ0 ⊆ ℤ |
| 44 | | xpss12 4463 |
. . . . . . 7
⊢
((ℕ0 ⊆ ℤ ∧ ℕ0 ⊆
ℤ) → (ℕ0 × ℕ0) ⊆
(ℤ × ℤ)) |
| 45 | 43, 43, 44 | mp2an 416 |
. . . . . 6
⊢
(ℕ0 × ℕ0) ⊆ (ℤ
× ℤ) |
| 46 | | fnssres 5032 |
. . . . . 6
⊢ (( gcd Fn
(ℤ × ℤ) ∧ (ℕ0 ×
ℕ0) ⊆ (ℤ × ℤ)) → ( gcd ↾
(ℕ0 × ℕ0)) Fn (ℕ0
× ℕ0)) |
| 47 | 42, 45, 46 | mp2an 416 |
. . . . 5
⊢ ( gcd
↾ (ℕ0 × ℕ0)) Fn
(ℕ0 × ℕ0) |
| 48 | 7 | eucalginv 10438 |
. . . . . 6
⊢ (𝑧 ∈ (ℕ0
× ℕ0) → ( gcd ‘(𝐸‘𝑧)) = ( gcd ‘𝑧)) |
| 49 | 8 | ffvelrni 5322 |
. . . . . . 7
⊢ (𝑧 ∈ (ℕ0
× ℕ0) → (𝐸‘𝑧) ∈ (ℕ0 ×
ℕ0)) |
| 50 | | fvres 5219 |
. . . . . . 7
⊢ ((𝐸‘𝑧) ∈ (ℕ0 ×
ℕ0) → (( gcd ↾ (ℕ0 ×
ℕ0))‘(𝐸‘𝑧)) = ( gcd ‘(𝐸‘𝑧))) |
| 51 | 49, 50 | syl 14 |
. . . . . 6
⊢ (𝑧 ∈ (ℕ0
× ℕ0) → (( gcd ↾ (ℕ0 ×
ℕ0))‘(𝐸‘𝑧)) = ( gcd ‘(𝐸‘𝑧))) |
| 52 | | fvres 5219 |
. . . . . 6
⊢ (𝑧 ∈ (ℕ0
× ℕ0) → (( gcd ↾ (ℕ0 ×
ℕ0))‘𝑧) = ( gcd ‘𝑧)) |
| 53 | 48, 51, 52 | 3eqtr4d 2123 |
. . . . 5
⊢ (𝑧 ∈ (ℕ0
× ℕ0) → (( gcd ↾ (ℕ0 ×
ℕ0))‘(𝐸‘𝑧)) = (( gcd ↾ (ℕ0
× ℕ0))‘𝑧)) |
| 54 | 2, 8, 47, 53, 11 | ialginv 10429 |
. . . 4
⊢ ((𝐴 ∈ (ℕ0
× ℕ0) ∧ 𝑁 ∈ ℕ0) → (( gcd
↾ (ℕ0 × ℕ0))‘(𝑅‘𝑁)) = (( gcd ↾ (ℕ0
× ℕ0))‘(𝑅‘0))) |
| 55 | 6, 54 | sylancom 411 |
. . 3
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (( gcd ↾ (ℕ0 ×
ℕ0))‘(𝑅‘𝑁)) = (( gcd ↾ (ℕ0
× ℕ0))‘(𝑅‘0))) |
| 56 | | fvres 5219 |
. . . 4
⊢ ((𝑅‘𝑁) ∈ (ℕ0 ×
ℕ0) → (( gcd ↾ (ℕ0 ×
ℕ0))‘(𝑅‘𝑁)) = ( gcd ‘(𝑅‘𝑁))) |
| 57 | 15, 56 | syl 14 |
. . 3
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (( gcd ↾ (ℕ0 ×
ℕ0))‘(𝑅‘𝑁)) = ( gcd ‘(𝑅‘𝑁))) |
| 58 | | 0nn0 8303 |
. . . . 5
⊢ 0 ∈
ℕ0 |
| 59 | | ffvelrn 5321 |
. . . . 5
⊢ ((𝑅:ℕ0⟶(ℕ0
× ℕ0) ∧ 0 ∈ ℕ0) → (𝑅‘0) ∈
(ℕ0 × ℕ0)) |
| 60 | 13, 58, 59 | sylancl 404 |
. . . 4
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑅‘0) ∈ (ℕ0
× ℕ0)) |
| 61 | | fvres 5219 |
. . . 4
⊢ ((𝑅‘0) ∈
(ℕ0 × ℕ0) → (( gcd ↾
(ℕ0 × ℕ0))‘(𝑅‘0)) = ( gcd ‘(𝑅‘0))) |
| 62 | 60, 61 | syl 14 |
. . 3
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (( gcd ↾ (ℕ0 ×
ℕ0))‘(𝑅‘0)) = ( gcd ‘(𝑅‘0))) |
| 63 | 55, 57, 62 | 3eqtr3d 2121 |
. 2
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ( gcd ‘(𝑅‘𝑁)) = ( gcd ‘(𝑅‘0))) |
| 64 | 1, 2, 3, 6, 9, 12 | ialgr0 10426 |
. . . . 5
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑅‘0) = 𝐴) |
| 65 | 64, 4 | syl6eq 2129 |
. . . 4
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑅‘0) = 〈𝑀, 𝑁〉) |
| 66 | 65 | fveq2d 5202 |
. . 3
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ( gcd ‘(𝑅‘0)) = ( gcd ‘〈𝑀, 𝑁〉)) |
| 67 | | df-ov 5535 |
. . 3
⊢ (𝑀 gcd 𝑁) = ( gcd ‘〈𝑀, 𝑁〉) |
| 68 | 66, 67 | syl6eqr 2131 |
. 2
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ( gcd ‘(𝑅‘0)) = (𝑀 gcd 𝑁)) |
| 69 | 39, 63, 68 | 3eqtrd 2117 |
1
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (1st ‘(𝑅‘𝑁)) = (𝑀 gcd 𝑁)) |