Step | Hyp | Ref
| Expression |
1 | | nn0uz 8653 |
. . . 4
⊢
ℕ0 = (ℤ≥‘0) |
2 | | algcvg.2 |
. . . 4
⊢ 𝑅 = seq0((𝐹 ∘ 1st ),
(ℕ0 × {𝐴}), 𝑆) |
3 | | 0zd 8363 |
. . . 4
⊢ (𝐴 ∈ 𝑆 → 0 ∈ ℤ) |
4 | | id 19 |
. . . 4
⊢ (𝐴 ∈ 𝑆 → 𝐴 ∈ 𝑆) |
5 | | algcvg.1 |
. . . . 5
⊢ 𝐹:𝑆⟶𝑆 |
6 | 5 | a1i 9 |
. . . 4
⊢ (𝐴 ∈ 𝑆 → 𝐹:𝑆⟶𝑆) |
7 | | ialgcvg.s |
. . . . 5
⊢ 𝑆 ∈ 𝑉 |
8 | 7 | a1i 9 |
. . . 4
⊢ (𝐴 ∈ 𝑆 → 𝑆 ∈ 𝑉) |
9 | 1, 2, 3, 4, 6, 8 | ialgrf 10427 |
. . 3
⊢ (𝐴 ∈ 𝑆 → 𝑅:ℕ0⟶𝑆) |
10 | | algcvg.5 |
. . . 4
⊢ 𝑁 = (𝐶‘𝐴) |
11 | | algcvg.3 |
. . . . 5
⊢ 𝐶:𝑆⟶ℕ0 |
12 | 11 | ffvelrni 5322 |
. . . 4
⊢ (𝐴 ∈ 𝑆 → (𝐶‘𝐴) ∈
ℕ0) |
13 | 10, 12 | syl5eqel 2165 |
. . 3
⊢ (𝐴 ∈ 𝑆 → 𝑁 ∈
ℕ0) |
14 | | fvco3 5265 |
. . 3
⊢ ((𝑅:ℕ0⟶𝑆 ∧ 𝑁 ∈ ℕ0) → ((𝐶 ∘ 𝑅)‘𝑁) = (𝐶‘(𝑅‘𝑁))) |
15 | 9, 13, 14 | syl2anc 403 |
. 2
⊢ (𝐴 ∈ 𝑆 → ((𝐶 ∘ 𝑅)‘𝑁) = (𝐶‘(𝑅‘𝑁))) |
16 | | fco 5076 |
. . . 4
⊢ ((𝐶:𝑆⟶ℕ0 ∧ 𝑅:ℕ0⟶𝑆) → (𝐶 ∘ 𝑅):ℕ0⟶ℕ0) |
17 | 11, 9, 16 | sylancr 405 |
. . 3
⊢ (𝐴 ∈ 𝑆 → (𝐶 ∘ 𝑅):ℕ0⟶ℕ0) |
18 | | 0nn0 8303 |
. . . . . 6
⊢ 0 ∈
ℕ0 |
19 | | fvco3 5265 |
. . . . . 6
⊢ ((𝑅:ℕ0⟶𝑆 ∧ 0 ∈
ℕ0) → ((𝐶 ∘ 𝑅)‘0) = (𝐶‘(𝑅‘0))) |
20 | 9, 18, 19 | sylancl 404 |
. . . . 5
⊢ (𝐴 ∈ 𝑆 → ((𝐶 ∘ 𝑅)‘0) = (𝐶‘(𝑅‘0))) |
21 | 1, 2, 3, 4, 6, 8 | ialgr0 10426 |
. . . . . 6
⊢ (𝐴 ∈ 𝑆 → (𝑅‘0) = 𝐴) |
22 | 21 | fveq2d 5202 |
. . . . 5
⊢ (𝐴 ∈ 𝑆 → (𝐶‘(𝑅‘0)) = (𝐶‘𝐴)) |
23 | 20, 22 | eqtrd 2113 |
. . . 4
⊢ (𝐴 ∈ 𝑆 → ((𝐶 ∘ 𝑅)‘0) = (𝐶‘𝐴)) |
24 | 23, 10 | syl6reqr 2132 |
. . 3
⊢ (𝐴 ∈ 𝑆 → 𝑁 = ((𝐶 ∘ 𝑅)‘0)) |
25 | 9 | ffvelrnda 5323 |
. . . . 5
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (𝑅‘𝑘) ∈ 𝑆) |
26 | | fveq2 5198 |
. . . . . . . . 9
⊢ (𝑧 = (𝑅‘𝑘) → (𝐹‘𝑧) = (𝐹‘(𝑅‘𝑘))) |
27 | 26 | fveq2d 5202 |
. . . . . . . 8
⊢ (𝑧 = (𝑅‘𝑘) → (𝐶‘(𝐹‘𝑧)) = (𝐶‘(𝐹‘(𝑅‘𝑘)))) |
28 | 27 | neeq1d 2263 |
. . . . . . 7
⊢ (𝑧 = (𝑅‘𝑘) → ((𝐶‘(𝐹‘𝑧)) ≠ 0 ↔ (𝐶‘(𝐹‘(𝑅‘𝑘))) ≠ 0)) |
29 | | fveq2 5198 |
. . . . . . . 8
⊢ (𝑧 = (𝑅‘𝑘) → (𝐶‘𝑧) = (𝐶‘(𝑅‘𝑘))) |
30 | 27, 29 | breq12d 3798 |
. . . . . . 7
⊢ (𝑧 = (𝑅‘𝑘) → ((𝐶‘(𝐹‘𝑧)) < (𝐶‘𝑧) ↔ (𝐶‘(𝐹‘(𝑅‘𝑘))) < (𝐶‘(𝑅‘𝑘)))) |
31 | 28, 30 | imbi12d 232 |
. . . . . 6
⊢ (𝑧 = (𝑅‘𝑘) → (((𝐶‘(𝐹‘𝑧)) ≠ 0 → (𝐶‘(𝐹‘𝑧)) < (𝐶‘𝑧)) ↔ ((𝐶‘(𝐹‘(𝑅‘𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅‘𝑘))) < (𝐶‘(𝑅‘𝑘))))) |
32 | | algcvg.4 |
. . . . . 6
⊢ (𝑧 ∈ 𝑆 → ((𝐶‘(𝐹‘𝑧)) ≠ 0 → (𝐶‘(𝐹‘𝑧)) < (𝐶‘𝑧))) |
33 | 31, 32 | vtoclga 2664 |
. . . . 5
⊢ ((𝑅‘𝑘) ∈ 𝑆 → ((𝐶‘(𝐹‘(𝑅‘𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅‘𝑘))) < (𝐶‘(𝑅‘𝑘)))) |
34 | 25, 33 | syl 14 |
. . . 4
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → ((𝐶‘(𝐹‘(𝑅‘𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅‘𝑘))) < (𝐶‘(𝑅‘𝑘)))) |
35 | | peano2nn0 8328 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
→ (𝑘 + 1) ∈
ℕ0) |
36 | | fvco3 5265 |
. . . . . . 7
⊢ ((𝑅:ℕ0⟶𝑆 ∧ (𝑘 + 1) ∈ ℕ0) →
((𝐶 ∘ 𝑅)‘(𝑘 + 1)) = (𝐶‘(𝑅‘(𝑘 + 1)))) |
37 | 9, 35, 36 | syl2an 283 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → ((𝐶 ∘ 𝑅)‘(𝑘 + 1)) = (𝐶‘(𝑅‘(𝑘 + 1)))) |
38 | 1, 2, 3, 4, 6, 8 | ialgrp1 10428 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (𝑅‘(𝑘 + 1)) = (𝐹‘(𝑅‘𝑘))) |
39 | 38 | fveq2d 5202 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (𝐶‘(𝑅‘(𝑘 + 1))) = (𝐶‘(𝐹‘(𝑅‘𝑘)))) |
40 | 37, 39 | eqtrd 2113 |
. . . . 5
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → ((𝐶 ∘ 𝑅)‘(𝑘 + 1)) = (𝐶‘(𝐹‘(𝑅‘𝑘)))) |
41 | 40 | neeq1d 2263 |
. . . 4
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (((𝐶 ∘ 𝑅)‘(𝑘 + 1)) ≠ 0 ↔ (𝐶‘(𝐹‘(𝑅‘𝑘))) ≠ 0)) |
42 | | fvco3 5265 |
. . . . . 6
⊢ ((𝑅:ℕ0⟶𝑆 ∧ 𝑘 ∈ ℕ0) → ((𝐶 ∘ 𝑅)‘𝑘) = (𝐶‘(𝑅‘𝑘))) |
43 | 9, 42 | sylan 277 |
. . . . 5
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → ((𝐶 ∘ 𝑅)‘𝑘) = (𝐶‘(𝑅‘𝑘))) |
44 | 40, 43 | breq12d 3798 |
. . . 4
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (((𝐶 ∘ 𝑅)‘(𝑘 + 1)) < ((𝐶 ∘ 𝑅)‘𝑘) ↔ (𝐶‘(𝐹‘(𝑅‘𝑘))) < (𝐶‘(𝑅‘𝑘)))) |
45 | 34, 41, 44 | 3imtr4d 201 |
. . 3
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (((𝐶 ∘ 𝑅)‘(𝑘 + 1)) ≠ 0 → ((𝐶 ∘ 𝑅)‘(𝑘 + 1)) < ((𝐶 ∘ 𝑅)‘𝑘))) |
46 | 17, 24, 45 | nn0seqcvgd 10423 |
. 2
⊢ (𝐴 ∈ 𝑆 → ((𝐶 ∘ 𝑅)‘𝑁) = 0) |
47 | 15, 46 | eqtr3d 2115 |
1
⊢ (𝐴 ∈ 𝑆 → (𝐶‘(𝑅‘𝑁)) = 0) |