ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ialgcvg GIF version

Theorem ialgcvg 10430
Description: One way to prove that an algorithm halts is to construct a countdown function 𝐶:𝑆⟶ℕ0 whose value is guaranteed to decrease for each iteration of 𝐹 until it reaches 0. That is, if 𝑋𝑆 is not a fixed point of 𝐹, then (𝐶‘(𝐹𝑋)) < (𝐶𝑋).

If 𝐶 is a countdown function for algorithm 𝐹, the sequence (𝐶‘(𝑅𝑘)) reaches 0 after at most 𝑁 steps, where 𝑁 is the value of 𝐶 for the initial state 𝐴. (Contributed by Paul Chapman, 22-Jun-2011.)

Hypotheses
Ref Expression
algcvg.1 𝐹:𝑆𝑆
algcvg.2 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}), 𝑆)
algcvg.3 𝐶:𝑆⟶ℕ0
algcvg.4 (𝑧𝑆 → ((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)))
algcvg.5 𝑁 = (𝐶𝐴)
ialgcvg.s 𝑆𝑉
Assertion
Ref Expression
ialgcvg (𝐴𝑆 → (𝐶‘(𝑅𝑁)) = 0)
Distinct variable groups:   𝑧,𝐶   𝑧,𝐹   𝑧,𝑅   𝑧,𝑆
Allowed substitution hints:   𝐴(𝑧)   𝑁(𝑧)   𝑉(𝑧)

Proof of Theorem ialgcvg
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 8653 . . . 4 0 = (ℤ‘0)
2 algcvg.2 . . . 4 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}), 𝑆)
3 0zd 8363 . . . 4 (𝐴𝑆 → 0 ∈ ℤ)
4 id 19 . . . 4 (𝐴𝑆𝐴𝑆)
5 algcvg.1 . . . . 5 𝐹:𝑆𝑆
65a1i 9 . . . 4 (𝐴𝑆𝐹:𝑆𝑆)
7 ialgcvg.s . . . . 5 𝑆𝑉
87a1i 9 . . . 4 (𝐴𝑆𝑆𝑉)
91, 2, 3, 4, 6, 8ialgrf 10427 . . 3 (𝐴𝑆𝑅:ℕ0𝑆)
10 algcvg.5 . . . 4 𝑁 = (𝐶𝐴)
11 algcvg.3 . . . . 5 𝐶:𝑆⟶ℕ0
1211ffvelrni 5322 . . . 4 (𝐴𝑆 → (𝐶𝐴) ∈ ℕ0)
1310, 12syl5eqel 2165 . . 3 (𝐴𝑆𝑁 ∈ ℕ0)
14 fvco3 5265 . . 3 ((𝑅:ℕ0𝑆𝑁 ∈ ℕ0) → ((𝐶𝑅)‘𝑁) = (𝐶‘(𝑅𝑁)))
159, 13, 14syl2anc 403 . 2 (𝐴𝑆 → ((𝐶𝑅)‘𝑁) = (𝐶‘(𝑅𝑁)))
16 fco 5076 . . . 4 ((𝐶:𝑆⟶ℕ0𝑅:ℕ0𝑆) → (𝐶𝑅):ℕ0⟶ℕ0)
1711, 9, 16sylancr 405 . . 3 (𝐴𝑆 → (𝐶𝑅):ℕ0⟶ℕ0)
18 0nn0 8303 . . . . . 6 0 ∈ ℕ0
19 fvco3 5265 . . . . . 6 ((𝑅:ℕ0𝑆 ∧ 0 ∈ ℕ0) → ((𝐶𝑅)‘0) = (𝐶‘(𝑅‘0)))
209, 18, 19sylancl 404 . . . . 5 (𝐴𝑆 → ((𝐶𝑅)‘0) = (𝐶‘(𝑅‘0)))
211, 2, 3, 4, 6, 8ialgr0 10426 . . . . . 6 (𝐴𝑆 → (𝑅‘0) = 𝐴)
2221fveq2d 5202 . . . . 5 (𝐴𝑆 → (𝐶‘(𝑅‘0)) = (𝐶𝐴))
2320, 22eqtrd 2113 . . . 4 (𝐴𝑆 → ((𝐶𝑅)‘0) = (𝐶𝐴))
2423, 10syl6reqr 2132 . . 3 (𝐴𝑆𝑁 = ((𝐶𝑅)‘0))
259ffvelrnda 5323 . . . . 5 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝑅𝑘) ∈ 𝑆)
26 fveq2 5198 . . . . . . . . 9 (𝑧 = (𝑅𝑘) → (𝐹𝑧) = (𝐹‘(𝑅𝑘)))
2726fveq2d 5202 . . . . . . . 8 (𝑧 = (𝑅𝑘) → (𝐶‘(𝐹𝑧)) = (𝐶‘(𝐹‘(𝑅𝑘))))
2827neeq1d 2263 . . . . . . 7 (𝑧 = (𝑅𝑘) → ((𝐶‘(𝐹𝑧)) ≠ 0 ↔ (𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0))
29 fveq2 5198 . . . . . . . 8 (𝑧 = (𝑅𝑘) → (𝐶𝑧) = (𝐶‘(𝑅𝑘)))
3027, 29breq12d 3798 . . . . . . 7 (𝑧 = (𝑅𝑘) → ((𝐶‘(𝐹𝑧)) < (𝐶𝑧) ↔ (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))))
3128, 30imbi12d 232 . . . . . 6 (𝑧 = (𝑅𝑘) → (((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)) ↔ ((𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘)))))
32 algcvg.4 . . . . . 6 (𝑧𝑆 → ((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)))
3331, 32vtoclga 2664 . . . . 5 ((𝑅𝑘) ∈ 𝑆 → ((𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))))
3425, 33syl 14 . . . 4 ((𝐴𝑆𝑘 ∈ ℕ0) → ((𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))))
35 peano2nn0 8328 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
36 fvco3 5265 . . . . . . 7 ((𝑅:ℕ0𝑆 ∧ (𝑘 + 1) ∈ ℕ0) → ((𝐶𝑅)‘(𝑘 + 1)) = (𝐶‘(𝑅‘(𝑘 + 1))))
379, 35, 36syl2an 283 . . . . . 6 ((𝐴𝑆𝑘 ∈ ℕ0) → ((𝐶𝑅)‘(𝑘 + 1)) = (𝐶‘(𝑅‘(𝑘 + 1))))
381, 2, 3, 4, 6, 8ialgrp1 10428 . . . . . . 7 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝑅‘(𝑘 + 1)) = (𝐹‘(𝑅𝑘)))
3938fveq2d 5202 . . . . . 6 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝐶‘(𝑅‘(𝑘 + 1))) = (𝐶‘(𝐹‘(𝑅𝑘))))
4037, 39eqtrd 2113 . . . . 5 ((𝐴𝑆𝑘 ∈ ℕ0) → ((𝐶𝑅)‘(𝑘 + 1)) = (𝐶‘(𝐹‘(𝑅𝑘))))
4140neeq1d 2263 . . . 4 ((𝐴𝑆𝑘 ∈ ℕ0) → (((𝐶𝑅)‘(𝑘 + 1)) ≠ 0 ↔ (𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0))
42 fvco3 5265 . . . . . 6 ((𝑅:ℕ0𝑆𝑘 ∈ ℕ0) → ((𝐶𝑅)‘𝑘) = (𝐶‘(𝑅𝑘)))
439, 42sylan 277 . . . . 5 ((𝐴𝑆𝑘 ∈ ℕ0) → ((𝐶𝑅)‘𝑘) = (𝐶‘(𝑅𝑘)))
4440, 43breq12d 3798 . . . 4 ((𝐴𝑆𝑘 ∈ ℕ0) → (((𝐶𝑅)‘(𝑘 + 1)) < ((𝐶𝑅)‘𝑘) ↔ (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))))
4534, 41, 443imtr4d 201 . . 3 ((𝐴𝑆𝑘 ∈ ℕ0) → (((𝐶𝑅)‘(𝑘 + 1)) ≠ 0 → ((𝐶𝑅)‘(𝑘 + 1)) < ((𝐶𝑅)‘𝑘)))
4617, 24, 45nn0seqcvgd 10423 . 2 (𝐴𝑆 → ((𝐶𝑅)‘𝑁) = 0)
4715, 46eqtr3d 2115 1 (𝐴𝑆 → (𝐶‘(𝑅𝑁)) = 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433  wne 2245  {csn 3398   class class class wbr 3785   × cxp 4361  ccom 4367  wf 4918  cfv 4922  (class class class)co 5532  1st c1st 5785  0cc0 6981  1c1 6982   + caddc 6984   < clt 7153  0cn0 8288  seqcseq 9431
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-iseq 9432
This theorem is referenced by:  ialgcvga  10433
  Copyright terms: Public domain W3C validator