![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0z | GIF version |
Description: Zero is an integer. (Contributed by NM, 12-Jan-2002.) |
Ref | Expression |
---|---|
0z | ⊢ 0 ∈ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 7119 | . 2 ⊢ 0 ∈ ℝ | |
2 | eqid 2081 | . . 3 ⊢ 0 = 0 | |
3 | 2 | 3mix1i 1110 | . 2 ⊢ (0 = 0 ∨ 0 ∈ ℕ ∨ -0 ∈ ℕ) |
4 | elz 8353 | . 2 ⊢ (0 ∈ ℤ ↔ (0 ∈ ℝ ∧ (0 = 0 ∨ 0 ∈ ℕ ∨ -0 ∈ ℕ))) | |
5 | 1, 3, 4 | mpbir2an 883 | 1 ⊢ 0 ∈ ℤ |
Colors of variables: wff set class |
Syntax hints: ∨ w3o 918 = wceq 1284 ∈ wcel 1433 ℝcr 6980 0cc0 6981 -cneg 7280 ℕcn 8039 ℤcz 8351 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-1re 7070 ax-addrcl 7073 ax-rnegex 7085 |
This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-un 2977 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-iota 4887 df-fv 4930 df-ov 5535 df-neg 7282 df-z 8352 |
This theorem is referenced by: 0zd 8363 nn0ssz 8369 znegcl 8382 zgt0ge1 8409 nn0n0n1ge2b 8427 nn0lt10b 8428 nnm1ge0 8433 gtndiv 8442 msqznn 8447 zeo 8452 nn0ind 8461 fnn0ind 8463 nn0uz 8653 1eluzge0 8662 eqreznegel 8699 qreccl 8727 qdivcl 8728 irrmul 8732 fz10 9065 fz01en 9072 fzpreddisj 9088 fzshftral 9125 fznn0 9129 fz0tp 9135 elfz0ubfz0 9136 1fv 9149 lbfzo0 9190 elfzonlteqm1 9219 fzo01 9225 fzo0to2pr 9227 fzo0to3tp 9228 flqge0nn0 9295 divfl0 9298 btwnzge0 9302 modqmulnn 9344 zmodfz 9348 modqid 9351 zmodid2 9354 q0mod 9357 modqmuladdnn0 9370 frecfzennn 9419 expival 9478 qexpclz 9497 facdiv 9665 bcval 9676 bcnn 9684 bcm1k 9687 ibcval5 9690 bcpasc 9693 4bc2eq6 9701 rexfiuz 9875 qabsor 9961 nn0abscl 9971 nnabscl 9986 climz 10131 climaddc1 10167 climmulc2 10169 climsubc1 10170 climsubc2 10171 climlec2 10179 dvdsval2 10198 dvdsdc 10203 moddvds 10204 dvds0 10210 0dvds 10215 zdvdsdc 10216 dvdscmulr 10224 dvdsmulcr 10225 dvdslelemd 10243 dvdsabseq 10247 divconjdvds 10249 alzdvds 10254 fzo0dvdseq 10257 odd2np1lem 10271 gcdmndc 10340 gcdsupex 10349 gcdsupcl 10350 gcd0val 10352 gcddvds 10355 gcd0id 10370 gcdid0 10371 gcdid 10377 bezoutlema 10388 bezoutlemb 10389 bezoutlembi 10394 dfgcd3 10399 dfgcd2 10403 gcdmultiplez 10410 dvdssq 10420 algcvgblem 10431 lcmmndc 10444 lcm0val 10447 dvdslcm 10451 lcmeq0 10453 lcmgcd 10460 lcmdvds 10461 lcmid 10462 3lcm2e6woprm 10468 6lcm4e12 10469 cncongr2 10486 sqrt2irrap 10558 |
Copyright terms: Public domain | W3C validator |