ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  carden2bex GIF version

Theorem carden2bex 6458
Description: If two numerable sets are equinumerous, then they have equal cardinalities. (Contributed by Jim Kingdon, 30-Aug-2021.)
Assertion
Ref Expression
carden2bex ((𝐴𝐵 ∧ ∃𝑥 ∈ On 𝑥𝐴) → (card‘𝐴) = (card‘𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem carden2bex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 enen2 6335 . . . . 5 (𝐴𝐵 → (𝑦𝐴𝑦𝐵))
21rabbidv 2593 . . . 4 (𝐴𝐵 → {𝑦 ∈ On ∣ 𝑦𝐴} = {𝑦 ∈ On ∣ 𝑦𝐵})
32inteqd 3641 . . 3 (𝐴𝐵 {𝑦 ∈ On ∣ 𝑦𝐴} = {𝑦 ∈ On ∣ 𝑦𝐵})
43adantr 270 . 2 ((𝐴𝐵 ∧ ∃𝑥 ∈ On 𝑥𝐴) → {𝑦 ∈ On ∣ 𝑦𝐴} = {𝑦 ∈ On ∣ 𝑦𝐵})
5 cardval3ex 6454 . . 3 (∃𝑥 ∈ On 𝑥𝐴 → (card‘𝐴) = {𝑦 ∈ On ∣ 𝑦𝐴})
65adantl 271 . 2 ((𝐴𝐵 ∧ ∃𝑥 ∈ On 𝑥𝐴) → (card‘𝐴) = {𝑦 ∈ On ∣ 𝑦𝐴})
7 entr 6287 . . . . . 6 ((𝑥𝐴𝐴𝐵) → 𝑥𝐵)
87expcom 114 . . . . 5 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
98reximdv 2462 . . . 4 (𝐴𝐵 → (∃𝑥 ∈ On 𝑥𝐴 → ∃𝑥 ∈ On 𝑥𝐵))
109imp 122 . . 3 ((𝐴𝐵 ∧ ∃𝑥 ∈ On 𝑥𝐴) → ∃𝑥 ∈ On 𝑥𝐵)
11 cardval3ex 6454 . . 3 (∃𝑥 ∈ On 𝑥𝐵 → (card‘𝐵) = {𝑦 ∈ On ∣ 𝑦𝐵})
1210, 11syl 14 . 2 ((𝐴𝐵 ∧ ∃𝑥 ∈ On 𝑥𝐴) → (card‘𝐵) = {𝑦 ∈ On ∣ 𝑦𝐵})
134, 6, 123eqtr4d 2123 1 ((𝐴𝐵 ∧ ∃𝑥 ∈ On 𝑥𝐴) → (card‘𝐴) = (card‘𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wrex 2349  {crab 2352   cint 3636   class class class wbr 3785  Oncon0 4118  cfv 4922  cen 6242  cardccrd 6448
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-er 6129  df-en 6245  df-card 6449
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator