ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcn2 GIF version

Theorem climcn2 10148
Description: Image of a limit under a continuous map, two-arg version. (Contributed by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climcn2.1 𝑍 = (ℤ𝑀)
climcn2.2 (𝜑𝑀 ∈ ℤ)
climcn2.3a (𝜑𝐴𝐶)
climcn2.3b (𝜑𝐵𝐷)
climcn2.4 ((𝜑 ∧ (𝑢𝐶𝑣𝐷)) → (𝑢𝐹𝑣) ∈ ℂ)
climcn2.5a (𝜑𝐺𝐴)
climcn2.5b (𝜑𝐻𝐵)
climcn2.6 (𝜑𝐾𝑊)
climcn2.7 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥))
climcn2.8a ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ 𝐶)
climcn2.8b ((𝜑𝑘𝑍) → (𝐻𝑘) ∈ 𝐷)
climcn2.9 ((𝜑𝑘𝑍) → (𝐾𝑘) = ((𝐺𝑘)𝐹(𝐻𝑘)))
Assertion
Ref Expression
climcn2 (𝜑𝐾 ⇝ (𝐴𝐹𝐵))
Distinct variable groups:   𝑢,𝑘,𝑣,𝐶   𝐷,𝑘,𝑢,𝑣   𝑦,𝑘,𝑧,𝐻,𝑣   𝑥,𝑘,𝜑,𝑢,𝑦,𝑧,𝑣   𝐴,𝑘,𝑢,𝑣,𝑥,𝑦,𝑧   𝑘,𝐺,𝑢,𝑣,𝑦,𝑧   𝑘,𝐾,𝑥   𝑘,𝑍,𝑦,𝑧   𝐵,𝑘,𝑢,𝑣,𝑥,𝑦,𝑧   𝑘,𝐹,𝑢,𝑣,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧)   𝐷(𝑥,𝑦,𝑧)   𝐺(𝑥)   𝐻(𝑥,𝑢)   𝐾(𝑦,𝑧,𝑣,𝑢)   𝑀(𝑥,𝑦,𝑧,𝑣,𝑢,𝑘)   𝑊(𝑥,𝑦,𝑧,𝑣,𝑢,𝑘)   𝑍(𝑥,𝑣,𝑢)

Proof of Theorem climcn2
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climcn2.7 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥))
2 climcn2.1 . . . . . . . . 9 𝑍 = (ℤ𝑀)
3 climcn2.2 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
43adantr 270 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝑀 ∈ ℤ)
5 simprl 497 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝑦 ∈ ℝ+)
6 eqidd 2082 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑘𝑍) → (𝐺𝑘) = (𝐺𝑘))
7 climcn2.5a . . . . . . . . . 10 (𝜑𝐺𝐴)
87adantr 270 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝐺𝐴)
92, 4, 5, 6, 8climi2 10127 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦)
10 simprr 498 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝑧 ∈ ℝ+)
11 eqidd 2082 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑘𝑍) → (𝐻𝑘) = (𝐻𝑘))
12 climcn2.5b . . . . . . . . . 10 (𝜑𝐻𝐵)
1312adantr 270 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝐻𝐵)
142, 4, 10, 11, 13climi2 10127 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐻𝑘) − 𝐵)) < 𝑧)
152rexanuz2 9877 . . . . . . . 8 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐻𝑘) − 𝐵)) < 𝑧))
169, 14, 15sylanbrc 408 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧))
172uztrn2 8636 . . . . . . . . . . . . 13 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
18 climcn2.8a . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ 𝐶)
19 climcn2.8b . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → (𝐻𝑘) ∈ 𝐷)
20 oveq1 5539 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = (𝐺𝑘) → (𝑢𝐴) = ((𝐺𝑘) − 𝐴))
2120fveq2d 5202 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = (𝐺𝑘) → (abs‘(𝑢𝐴)) = (abs‘((𝐺𝑘) − 𝐴)))
2221breq1d 3795 . . . . . . . . . . . . . . . . . . 19 (𝑢 = (𝐺𝑘) → ((abs‘(𝑢𝐴)) < 𝑦 ↔ (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
2322anbi1d 452 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝐺𝑘) → (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) ↔ ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧)))
24 oveq1 5539 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = (𝐺𝑘) → (𝑢𝐹𝑣) = ((𝐺𝑘)𝐹𝑣))
2524oveq1d 5547 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = (𝐺𝑘) → ((𝑢𝐹𝑣) − (𝐴𝐹𝐵)) = (((𝐺𝑘)𝐹𝑣) − (𝐴𝐹𝐵)))
2625fveq2d 5202 . . . . . . . . . . . . . . . . . . 19 (𝑢 = (𝐺𝑘) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) = (abs‘(((𝐺𝑘)𝐹𝑣) − (𝐴𝐹𝐵))))
2726breq1d 3795 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝐺𝑘) → ((abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥 ↔ (abs‘(((𝐺𝑘)𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥))
2823, 27imbi12d 232 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝐺𝑘) → ((((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) ↔ (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥)))
29 oveq1 5539 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = (𝐻𝑘) → (𝑣𝐵) = ((𝐻𝑘) − 𝐵))
3029fveq2d 5202 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = (𝐻𝑘) → (abs‘(𝑣𝐵)) = (abs‘((𝐻𝑘) − 𝐵)))
3130breq1d 3795 . . . . . . . . . . . . . . . . . . 19 (𝑣 = (𝐻𝑘) → ((abs‘(𝑣𝐵)) < 𝑧 ↔ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧))
3231anbi2d 451 . . . . . . . . . . . . . . . . . 18 (𝑣 = (𝐻𝑘) → (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) ↔ ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧)))
33 oveq2 5540 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = (𝐻𝑘) → ((𝐺𝑘)𝐹𝑣) = ((𝐺𝑘)𝐹(𝐻𝑘)))
3433oveq1d 5547 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = (𝐻𝑘) → (((𝐺𝑘)𝐹𝑣) − (𝐴𝐹𝐵)) = (((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵)))
3534fveq2d 5202 . . . . . . . . . . . . . . . . . . 19 (𝑣 = (𝐻𝑘) → (abs‘(((𝐺𝑘)𝐹𝑣) − (𝐴𝐹𝐵))) = (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))))
3635breq1d 3795 . . . . . . . . . . . . . . . . . 18 (𝑣 = (𝐻𝑘) → ((abs‘(((𝐺𝑘)𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥 ↔ (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
3732, 36imbi12d 232 . . . . . . . . . . . . . . . . 17 (𝑣 = (𝐻𝑘) → ((((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) ↔ (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥)))
3828, 37rspc2v 2713 . . . . . . . . . . . . . . . 16 (((𝐺𝑘) ∈ 𝐶 ∧ (𝐻𝑘) ∈ 𝐷) → (∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) → (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥)))
3918, 19, 38syl2anc 403 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) → (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥)))
4039imp 122 . . . . . . . . . . . . . 14 (((𝜑𝑘𝑍) ∧ ∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥)) → (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
4140an32s 532 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥)) ∧ 𝑘𝑍) → (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
4217, 41sylan2 280 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥)) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
4342anassrs 392 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥)) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
4443ralimdva 2429 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥)) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
4544reximdva 2463 . . . . . . . . 9 ((𝜑 ∧ ∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
4645ex 113 . . . . . . . 8 (𝜑 → (∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥)))
4746adantr 270 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥)))
4816, 47mpid 41 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
4948rexlimdvva 2484 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
5049adantr 270 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
511, 50mpd 13 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥)
5251ralrimiva 2434 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥)
53 climcn2.6 . . 3 (𝜑𝐾𝑊)
54 climcn2.9 . . 3 ((𝜑𝑘𝑍) → (𝐾𝑘) = ((𝐺𝑘)𝐹(𝐻𝑘)))
55 climcn2.4 . . . 4 ((𝜑 ∧ (𝑢𝐶𝑣𝐷)) → (𝑢𝐹𝑣) ∈ ℂ)
56 climcn2.3a . . . 4 (𝜑𝐴𝐶)
57 climcn2.3b . . . 4 (𝜑𝐵𝐷)
5855, 56, 57caovcld 5674 . . 3 (𝜑 → (𝐴𝐹𝐵) ∈ ℂ)
5918, 19jca 300 . . . 4 ((𝜑𝑘𝑍) → ((𝐺𝑘) ∈ 𝐶 ∧ (𝐻𝑘) ∈ 𝐷))
6055ralrimivva 2443 . . . . 5 (𝜑 → ∀𝑢𝐶𝑣𝐷 (𝑢𝐹𝑣) ∈ ℂ)
6160adantr 270 . . . 4 ((𝜑𝑘𝑍) → ∀𝑢𝐶𝑣𝐷 (𝑢𝐹𝑣) ∈ ℂ)
6224eleq1d 2147 . . . . 5 (𝑢 = (𝐺𝑘) → ((𝑢𝐹𝑣) ∈ ℂ ↔ ((𝐺𝑘)𝐹𝑣) ∈ ℂ))
6333eleq1d 2147 . . . . 5 (𝑣 = (𝐻𝑘) → (((𝐺𝑘)𝐹𝑣) ∈ ℂ ↔ ((𝐺𝑘)𝐹(𝐻𝑘)) ∈ ℂ))
6462, 63rspc2v 2713 . . . 4 (((𝐺𝑘) ∈ 𝐶 ∧ (𝐻𝑘) ∈ 𝐷) → (∀𝑢𝐶𝑣𝐷 (𝑢𝐹𝑣) ∈ ℂ → ((𝐺𝑘)𝐹(𝐻𝑘)) ∈ ℂ))
6559, 61, 64sylc 61 . . 3 ((𝜑𝑘𝑍) → ((𝐺𝑘)𝐹(𝐻𝑘)) ∈ ℂ)
662, 3, 53, 54, 58, 65clim2c 10123 . 2 (𝜑 → (𝐾 ⇝ (𝐴𝐹𝐵) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
6752, 66mpbird 165 1 (𝜑𝐾 ⇝ (𝐴𝐹𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433  wral 2348  wrex 2349   class class class wbr 3785  cfv 4922  (class class class)co 5532  cc 6979   < clt 7153  cmin 7279  cz 8351  cuz 8619  +crp 8734  abscabs 9883  cli 10117
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-clim 10118
This theorem is referenced by:  climadd  10164  climmul  10165  climsub  10166
  Copyright terms: Public domain W3C validator