ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfplpq2 GIF version

Theorem dfplpq2 6544
Description: Alternate definition of pre-addition on positive fractions. (Contributed by Jim Kingdon, 12-Sep-2019.)
Assertion
Ref Expression
dfplpq2 +pQ = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)), (𝑣 ·N 𝑓)⟩))}
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑓

Proof of Theorem dfplpq2
StepHypRef Expression
1 df-mpt2 5537 . 2 (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ 𝑧 = ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩)}
2 df-plpq 6534 . 2 +pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩)
3 1st2nd2 5821 . . . . . . . . . 10 (𝑥 ∈ (N × N) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
43eqeq1d 2089 . . . . . . . . 9 (𝑥 ∈ (N × N) → (𝑥 = ⟨𝑤, 𝑣⟩ ↔ ⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑤, 𝑣⟩))
5 1st2nd2 5821 . . . . . . . . . 10 (𝑦 ∈ (N × N) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
65eqeq1d 2089 . . . . . . . . 9 (𝑦 ∈ (N × N) → (𝑦 = ⟨𝑢, 𝑓⟩ ↔ ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑢, 𝑓⟩))
74, 6bi2anan9 570 . . . . . . . 8 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ↔ (⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑤, 𝑣⟩ ∧ ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑢, 𝑓⟩)))
87anbi1d 452 . . . . . . 7 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → (((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·N 𝑓) +N (𝑢 ·N 𝑣)), (𝑣 ·N 𝑓)⟩) ↔ ((⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑤, 𝑣⟩ ∧ ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·N 𝑓) +N (𝑢 ·N 𝑣)), (𝑣 ·N 𝑓)⟩)))
9 xp1st 5812 . . . . . . . . . . . . . 14 (𝑦 ∈ (N × N) → (1st𝑦) ∈ N)
109ad2antlr 472 . . . . . . . . . . . . 13 (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩)) → (1st𝑦) ∈ N)
117biimpa 290 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩)) → (⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑤, 𝑣⟩ ∧ ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑢, 𝑓⟩))
1211simprd 112 . . . . . . . . . . . . . 14 (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩)) → ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑢, 𝑓⟩)
13 vex 2604 . . . . . . . . . . . . . . . . 17 𝑢 ∈ V
14 vex 2604 . . . . . . . . . . . . . . . . 17 𝑓 ∈ V
1513, 14opth2 3995 . . . . . . . . . . . . . . . 16 (⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑢, 𝑓⟩ ↔ ((1st𝑦) = 𝑢 ∧ (2nd𝑦) = 𝑓))
1615simplbi 268 . . . . . . . . . . . . . . 15 (⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑢, 𝑓⟩ → (1st𝑦) = 𝑢)
1716eleq1d 2147 . . . . . . . . . . . . . 14 (⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑢, 𝑓⟩ → ((1st𝑦) ∈ N𝑢N))
1812, 17syl 14 . . . . . . . . . . . . 13 (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩)) → ((1st𝑦) ∈ N𝑢N))
1910, 18mpbid 145 . . . . . . . . . . . 12 (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩)) → 𝑢N)
20 xp2nd 5813 . . . . . . . . . . . . . 14 (𝑥 ∈ (N × N) → (2nd𝑥) ∈ N)
2120ad2antrr 471 . . . . . . . . . . . . 13 (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩)) → (2nd𝑥) ∈ N)
2211simpld 110 . . . . . . . . . . . . . 14 (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩)) → ⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑤, 𝑣⟩)
23 vex 2604 . . . . . . . . . . . . . . . . 17 𝑤 ∈ V
24 vex 2604 . . . . . . . . . . . . . . . . 17 𝑣 ∈ V
2523, 24opth2 3995 . . . . . . . . . . . . . . . 16 (⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑤, 𝑣⟩ ↔ ((1st𝑥) = 𝑤 ∧ (2nd𝑥) = 𝑣))
2625simprbi 269 . . . . . . . . . . . . . . 15 (⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑤, 𝑣⟩ → (2nd𝑥) = 𝑣)
2726eleq1d 2147 . . . . . . . . . . . . . 14 (⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑤, 𝑣⟩ → ((2nd𝑥) ∈ N𝑣N))
2822, 27syl 14 . . . . . . . . . . . . 13 (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩)) → ((2nd𝑥) ∈ N𝑣N))
2921, 28mpbid 145 . . . . . . . . . . . 12 (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩)) → 𝑣N)
30 mulcompig 6521 . . . . . . . . . . . 12 ((𝑢N𝑣N) → (𝑢 ·N 𝑣) = (𝑣 ·N 𝑢))
3119, 29, 30syl2anc 403 . . . . . . . . . . 11 (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩)) → (𝑢 ·N 𝑣) = (𝑣 ·N 𝑢))
3231oveq2d 5548 . . . . . . . . . 10 (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩)) → ((𝑤 ·N 𝑓) +N (𝑢 ·N 𝑣)) = ((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)))
3332opeq1d 3576 . . . . . . . . 9 (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩)) → ⟨((𝑤 ·N 𝑓) +N (𝑢 ·N 𝑣)), (𝑣 ·N 𝑓)⟩ = ⟨((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)), (𝑣 ·N 𝑓)⟩)
3433eqeq2d 2092 . . . . . . . 8 (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩)) → (𝑧 = ⟨((𝑤 ·N 𝑓) +N (𝑢 ·N 𝑣)), (𝑣 ·N 𝑓)⟩ ↔ 𝑧 = ⟨((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)), (𝑣 ·N 𝑓)⟩))
3534pm5.32da 439 . . . . . . 7 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → (((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·N 𝑓) +N (𝑢 ·N 𝑣)), (𝑣 ·N 𝑓)⟩) ↔ ((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)), (𝑣 ·N 𝑓)⟩)))
368, 35bitr3d 188 . . . . . 6 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → (((⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑤, 𝑣⟩ ∧ ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·N 𝑓) +N (𝑢 ·N 𝑣)), (𝑣 ·N 𝑓)⟩) ↔ ((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)), (𝑣 ·N 𝑓)⟩)))
37364exbidv 1791 . . . . 5 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → (∃𝑤𝑣𝑢𝑓((⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑤, 𝑣⟩ ∧ ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·N 𝑓) +N (𝑢 ·N 𝑣)), (𝑣 ·N 𝑓)⟩) ↔ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)), (𝑣 ·N 𝑓)⟩)))
38 xp1st 5812 . . . . . . 7 (𝑥 ∈ (N × N) → (1st𝑥) ∈ N)
3938, 20jca 300 . . . . . 6 (𝑥 ∈ (N × N) → ((1st𝑥) ∈ N ∧ (2nd𝑥) ∈ N))
40 xp2nd 5813 . . . . . . 7 (𝑦 ∈ (N × N) → (2nd𝑦) ∈ N)
419, 40jca 300 . . . . . 6 (𝑦 ∈ (N × N) → ((1st𝑦) ∈ N ∧ (2nd𝑦) ∈ N))
42 simpll 495 . . . . . . . . . . 11 (((𝑤 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) ∧ (𝑢 = (1st𝑦) ∧ 𝑓 = (2nd𝑦))) → 𝑤 = (1st𝑥))
43 simprr 498 . . . . . . . . . . 11 (((𝑤 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) ∧ (𝑢 = (1st𝑦) ∧ 𝑓 = (2nd𝑦))) → 𝑓 = (2nd𝑦))
4442, 43oveq12d 5550 . . . . . . . . . 10 (((𝑤 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) ∧ (𝑢 = (1st𝑦) ∧ 𝑓 = (2nd𝑦))) → (𝑤 ·N 𝑓) = ((1st𝑥) ·N (2nd𝑦)))
45 simprl 497 . . . . . . . . . . 11 (((𝑤 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) ∧ (𝑢 = (1st𝑦) ∧ 𝑓 = (2nd𝑦))) → 𝑢 = (1st𝑦))
46 simplr 496 . . . . . . . . . . 11 (((𝑤 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) ∧ (𝑢 = (1st𝑦) ∧ 𝑓 = (2nd𝑦))) → 𝑣 = (2nd𝑥))
4745, 46oveq12d 5550 . . . . . . . . . 10 (((𝑤 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) ∧ (𝑢 = (1st𝑦) ∧ 𝑓 = (2nd𝑦))) → (𝑢 ·N 𝑣) = ((1st𝑦) ·N (2nd𝑥)))
4844, 47oveq12d 5550 . . . . . . . . 9 (((𝑤 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) ∧ (𝑢 = (1st𝑦) ∧ 𝑓 = (2nd𝑦))) → ((𝑤 ·N 𝑓) +N (𝑢 ·N 𝑣)) = (((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))))
4946, 43oveq12d 5550 . . . . . . . . 9 (((𝑤 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) ∧ (𝑢 = (1st𝑦) ∧ 𝑓 = (2nd𝑦))) → (𝑣 ·N 𝑓) = ((2nd𝑥) ·N (2nd𝑦)))
5048, 49opeq12d 3578 . . . . . . . 8 (((𝑤 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) ∧ (𝑢 = (1st𝑦) ∧ 𝑓 = (2nd𝑦))) → ⟨((𝑤 ·N 𝑓) +N (𝑢 ·N 𝑣)), (𝑣 ·N 𝑓)⟩ = ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩)
5150eqeq2d 2092 . . . . . . 7 (((𝑤 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) ∧ (𝑢 = (1st𝑦) ∧ 𝑓 = (2nd𝑦))) → (𝑧 = ⟨((𝑤 ·N 𝑓) +N (𝑢 ·N 𝑣)), (𝑣 ·N 𝑓)⟩ ↔ 𝑧 = ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩))
5251copsex4g 4002 . . . . . 6 ((((1st𝑥) ∈ N ∧ (2nd𝑥) ∈ N) ∧ ((1st𝑦) ∈ N ∧ (2nd𝑦) ∈ N)) → (∃𝑤𝑣𝑢𝑓((⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑤, 𝑣⟩ ∧ ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·N 𝑓) +N (𝑢 ·N 𝑣)), (𝑣 ·N 𝑓)⟩) ↔ 𝑧 = ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩))
5339, 41, 52syl2an 283 . . . . 5 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → (∃𝑤𝑣𝑢𝑓((⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑤, 𝑣⟩ ∧ ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·N 𝑓) +N (𝑢 ·N 𝑣)), (𝑣 ·N 𝑓)⟩) ↔ 𝑧 = ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩))
5437, 53bitr3d 188 . . . 4 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → (∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)), (𝑣 ·N 𝑓)⟩) ↔ 𝑧 = ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩))
5554pm5.32i 441 . . 3 (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)), (𝑣 ·N 𝑓)⟩)) ↔ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ 𝑧 = ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩))
5655oprabbii 5580 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)), (𝑣 ·N 𝑓)⟩))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ 𝑧 = ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩)}
571, 2, 563eqtr4i 2111 1 +pQ = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)), (𝑣 ·N 𝑓)⟩))}
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103   = wceq 1284  wex 1421  wcel 1433  cop 3401   × cxp 4361  cfv 4922  (class class class)co 5532  {coprab 5533  cmpt2 5534  1st c1st 5785  2nd c2nd 5786  Ncnpi 6462   +N cpli 6463   ·N cmi 6464   +pQ cplpq 6466
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028  df-omul 6029  df-ni 6494  df-mi 6496  df-plpq 6534
This theorem is referenced by:  addpipqqs  6560
  Copyright terms: Public domain W3C validator