ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalgb GIF version

Theorem divalgb 10325
Description: Express the division algorithm as stated in divalg 10324 in terms of . (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
divalgb ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))))
Distinct variable groups:   𝐷,𝑞,𝑟   𝑁,𝑞,𝑟

Proof of Theorem divalgb
StepHypRef Expression
1 zsubcl 8392 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (𝑁𝑟) ∈ ℤ)
2 divides 10197 . . . . . . . . . . . 12 ((𝐷 ∈ ℤ ∧ (𝑁𝑟) ∈ ℤ) → (𝐷 ∥ (𝑁𝑟) ↔ ∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁𝑟)))
31, 2sylan2 280 . . . . . . . . . . 11 ((𝐷 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ)) → (𝐷 ∥ (𝑁𝑟) ↔ ∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁𝑟)))
433impb 1134 . . . . . . . . . 10 ((𝐷 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (𝐷 ∥ (𝑁𝑟) ↔ ∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁𝑟)))
543com12 1142 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (𝐷 ∥ (𝑁𝑟) ↔ ∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁𝑟)))
6 zcn 8356 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
7 zcn 8356 . . . . . . . . . . . . . . . . . 18 (𝑟 ∈ ℤ → 𝑟 ∈ ℂ)
8 zmulcl 8404 . . . . . . . . . . . . . . . . . . 19 ((𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝑞 · 𝐷) ∈ ℤ)
98zcnd 8470 . . . . . . . . . . . . . . . . . 18 ((𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝑞 · 𝐷) ∈ ℂ)
10 subadd 7311 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℂ ∧ 𝑟 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → ((𝑁𝑟) = (𝑞 · 𝐷) ↔ (𝑟 + (𝑞 · 𝐷)) = 𝑁))
116, 7, 9, 10syl3an 1211 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ (𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝑁𝑟) = (𝑞 · 𝐷) ↔ (𝑟 + (𝑞 · 𝐷)) = 𝑁))
12 addcom 7245 . . . . . . . . . . . . . . . . . . . 20 ((𝑟 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → (𝑟 + (𝑞 · 𝐷)) = ((𝑞 · 𝐷) + 𝑟))
137, 9, 12syl2an 283 . . . . . . . . . . . . . . . . . . 19 ((𝑟 ∈ ℤ ∧ (𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝑟 + (𝑞 · 𝐷)) = ((𝑞 · 𝐷) + 𝑟))
14133adant1 956 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ (𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝑟 + (𝑞 · 𝐷)) = ((𝑞 · 𝐷) + 𝑟))
1514eqeq1d 2089 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ (𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝑟 + (𝑞 · 𝐷)) = 𝑁 ↔ ((𝑞 · 𝐷) + 𝑟) = 𝑁))
1611, 15bitrd 186 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ (𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝑁𝑟) = (𝑞 · 𝐷) ↔ ((𝑞 · 𝐷) + 𝑟) = 𝑁))
17 eqcom 2083 . . . . . . . . . . . . . . . 16 ((𝑁𝑟) = (𝑞 · 𝐷) ↔ (𝑞 · 𝐷) = (𝑁𝑟))
18 eqcom 2083 . . . . . . . . . . . . . . . 16 (((𝑞 · 𝐷) + 𝑟) = 𝑁𝑁 = ((𝑞 · 𝐷) + 𝑟))
1916, 17, 183bitr3g 220 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ (𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝑞 · 𝐷) = (𝑁𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
20193expia 1140 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ) → ((𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((𝑞 · 𝐷) = (𝑁𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑟))))
2120expcomd 1370 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (𝐷 ∈ ℤ → (𝑞 ∈ ℤ → ((𝑞 · 𝐷) = (𝑁𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))))
22213impia 1135 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝑞 ∈ ℤ → ((𝑞 · 𝐷) = (𝑁𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑟))))
2322imp 122 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ 𝑞 ∈ ℤ) → ((𝑞 · 𝐷) = (𝑁𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
2423rexbidva 2365 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁𝑟) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
25243com23 1144 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁𝑟) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
265, 25bitrd 186 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (𝐷 ∥ (𝑁𝑟) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
2726anbi2d 451 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ 𝐷 ∥ (𝑁𝑟)) ↔ ((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟))))
28 df-3an 921 . . . . . . . . 9 ((0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
2928rexbii 2373 . . . . . . . 8 (∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃𝑞 ∈ ℤ ((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
30 r19.42v 2511 . . . . . . . 8 (∃𝑞 ∈ ℤ ((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
3129, 30bitri 182 . . . . . . 7 (∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
3227, 31syl6rbbr 197 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ 𝐷 ∥ (𝑁𝑟))))
33 anass 393 . . . . . 6 (((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ 𝐷 ∥ (𝑁𝑟)) ↔ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))))
3432, 33syl6bb 194 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))))
35343expa 1138 . . . 4 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → (∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))))
3635reubidva 2536 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃!𝑟 ∈ ℤ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))))
37 elnn0z 8364 . . . . . . 7 (𝑟 ∈ ℕ0 ↔ (𝑟 ∈ ℤ ∧ 0 ≤ 𝑟))
3837anbi1i 445 . . . . . 6 ((𝑟 ∈ ℕ0 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))) ↔ ((𝑟 ∈ ℤ ∧ 0 ≤ 𝑟) ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))))
39 anass 393 . . . . . 6 (((𝑟 ∈ ℤ ∧ 0 ≤ 𝑟) ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))) ↔ (𝑟 ∈ ℤ ∧ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))))
4038, 39bitri 182 . . . . 5 ((𝑟 ∈ ℕ0 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))) ↔ (𝑟 ∈ ℤ ∧ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))))
4140eubii 1950 . . . 4 (∃!𝑟(𝑟 ∈ ℕ0 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))) ↔ ∃!𝑟(𝑟 ∈ ℤ ∧ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))))
42 df-reu 2355 . . . 4 (∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)) ↔ ∃!𝑟(𝑟 ∈ ℕ0 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))))
43 df-reu 2355 . . . 4 (∃!𝑟 ∈ ℤ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))) ↔ ∃!𝑟(𝑟 ∈ ℤ ∧ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))))
4441, 42, 433bitr4ri 211 . . 3 (∃!𝑟 ∈ ℤ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))) ↔ ∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))
4536, 44syl6bb 194 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))))
46453adant3 958 1 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 919   = wceq 1284  wcel 1433  ∃!weu 1941  wne 2245  wrex 2349  ∃!wreu 2350   class class class wbr 3785  cfv 4922  (class class class)co 5532  cc 6979  0cc0 6981   + caddc 6984   · cmul 6986   < clt 7153  cle 7154  cmin 7279  0cn0 8288  cz 8351  abscabs 9883  cdvds 10195
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-dvds 10196
This theorem is referenced by:  divalg2  10326
  Copyright terms: Public domain W3C validator