ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzomelpfzo GIF version

Theorem elfzomelpfzo 9240
Description: An integer increased by another integer is an element of a half-open integer range if and only if the integer is contained in the half-open integer range with bounds decreased by the other integer. (Contributed by Alexander van der Vekens, 30-Mar-2018.)
Assertion
Ref Expression
elfzomelpfzo (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐾 ∈ ((𝑀𝐿)..^(𝑁𝐿)) ↔ (𝐾 + 𝐿) ∈ (𝑀..^𝑁)))

Proof of Theorem elfzomelpfzo
StepHypRef Expression
1 zsubcl 8392 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑀𝐿) ∈ ℤ)
21ad2ant2rl 494 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑀𝐿) ∈ ℤ)
3 simpl 107 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
43adantr 270 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝑀 ∈ ℤ)
52, 42thd 173 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝑀𝐿) ∈ ℤ ↔ 𝑀 ∈ ℤ))
6 simpl 107 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐾 ∈ ℤ)
76adantl 271 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝐾 ∈ ℤ)
8 zaddcl 8391 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐾 + 𝐿) ∈ ℤ)
98adantl 271 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐾 + 𝐿) ∈ ℤ)
107, 92thd 173 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐾 ∈ ℤ ↔ (𝐾 + 𝐿) ∈ ℤ))
11 zre 8355 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
1211adantr 270 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
1312adantr 270 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝑀 ∈ ℝ)
14 zre 8355 . . . . . . . 8 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
1514adantl 271 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐿 ∈ ℝ)
1615adantl 271 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝐿 ∈ ℝ)
17 zre 8355 . . . . . . . 8 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
1817adantr 270 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐾 ∈ ℝ)
1918adantl 271 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝐾 ∈ ℝ)
2013, 16, 19lesubaddd 7642 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝑀𝐿) ≤ 𝐾𝑀 ≤ (𝐾 + 𝐿)))
215, 10, 203anbi123d 1243 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (((𝑀𝐿) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀𝐿) ≤ 𝐾) ↔ (𝑀 ∈ ℤ ∧ (𝐾 + 𝐿) ∈ ℤ ∧ 𝑀 ≤ (𝐾 + 𝐿))))
22 eluz2 8625 . . . 4 (𝐾 ∈ (ℤ‘(𝑀𝐿)) ↔ ((𝑀𝐿) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀𝐿) ≤ 𝐾))
23 eluz2 8625 . . . 4 ((𝐾 + 𝐿) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝐾 + 𝐿) ∈ ℤ ∧ 𝑀 ≤ (𝐾 + 𝐿)))
2421, 22, 233bitr4g 221 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐾 ∈ (ℤ‘(𝑀𝐿)) ↔ (𝐾 + 𝐿) ∈ (ℤ𝑀)))
25 zsubcl 8392 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑁𝐿) ∈ ℤ)
2625ad2ant2l 491 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑁𝐿) ∈ ℤ)
27 simplr 496 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝑁 ∈ ℤ)
2826, 272thd 173 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝑁𝐿) ∈ ℤ ↔ 𝑁 ∈ ℤ))
29 zre 8355 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3029adantl 271 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
3130adantr 270 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝑁 ∈ ℝ)
3219, 16, 31ltaddsubd 7645 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝐾 + 𝐿) < 𝑁𝐾 < (𝑁𝐿)))
3332bicomd 139 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐾 < (𝑁𝐿) ↔ (𝐾 + 𝐿) < 𝑁))
3424, 28, 333anbi123d 1243 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝐾 ∈ (ℤ‘(𝑀𝐿)) ∧ (𝑁𝐿) ∈ ℤ ∧ 𝐾 < (𝑁𝐿)) ↔ ((𝐾 + 𝐿) ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ (𝐾 + 𝐿) < 𝑁)))
35 elfzo2 9160 . 2 (𝐾 ∈ ((𝑀𝐿)..^(𝑁𝐿)) ↔ (𝐾 ∈ (ℤ‘(𝑀𝐿)) ∧ (𝑁𝐿) ∈ ℤ ∧ 𝐾 < (𝑁𝐿)))
36 elfzo2 9160 . 2 ((𝐾 + 𝐿) ∈ (𝑀..^𝑁) ↔ ((𝐾 + 𝐿) ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ (𝐾 + 𝐿) < 𝑁))
3734, 35, 363bitr4g 221 1 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐾 ∈ ((𝑀𝐿)..^(𝑁𝐿)) ↔ (𝐾 + 𝐿) ∈ (𝑀..^𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 919  wcel 1433   class class class wbr 3785  cfv 4922  (class class class)co 5532  cr 6980   + caddc 6984   < clt 7153  cle 7154  cmin 7279  cz 8351  cuz 8619  ..^cfzo 9152
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-fz 9030  df-fzo 9153
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator