HomeHome Intuitionistic Logic Explorer
Theorem List (p. 93 of 108)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 9201-9300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremfzoaddel 9201 Translate membership in a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.)
((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 + 𝐷) ∈ ((𝐵 + 𝐷)..^(𝐶 + 𝐷)))
 
Theoremfzoaddel2 9202 Translate membership in a shifted-down half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.)
((𝐴 ∈ (0..^(𝐵𝐶)) ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 + 𝐶) ∈ (𝐶..^𝐵))
 
Theoremfzosubel 9203 Translate membership in a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.)
((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴𝐷) ∈ ((𝐵𝐷)..^(𝐶𝐷)))
 
Theoremfzosubel2 9204 Membership in a translated half-open integer range implies translated membership in the original range. (Contributed by Stefan O'Rear, 15-Aug-2015.)
((𝐴 ∈ ((𝐵 + 𝐶)..^(𝐵 + 𝐷)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴𝐵) ∈ (𝐶..^𝐷))
 
Theoremfzosubel3 9205 Membership in a translated half-open integer range when the original range is zero-based. (Contributed by Stefan O'Rear, 15-Aug-2015.)
((𝐴 ∈ (𝐵..^(𝐵 + 𝐷)) ∧ 𝐷 ∈ ℤ) → (𝐴𝐵) ∈ (0..^𝐷))
 
Theoremeluzgtdifelfzo 9206 Membership of the difference of integers in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 17-Sep-2018.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴) → (𝑁𝐴) ∈ (0..^(𝑁𝐵))))
 
Theoremige2m2fzo 9207 Membership of an integer greater than 1 decreased by 2 in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 3-Oct-2018.)
(𝑁 ∈ (ℤ‘2) → (𝑁 − 2) ∈ (0..^(𝑁 − 1)))
 
Theoremfzocatel 9208 Translate membership in a half-open integer range. (Contributed by Thierry Arnoux, 28-Sep-2018.)
(((𝐴 ∈ (0..^(𝐵 + 𝐶)) ∧ ¬ 𝐴 ∈ (0..^𝐵)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴𝐵) ∈ (0..^𝐶))
 
Theoremubmelfzo 9209 If an integer in a 1 based finite set of sequential integers is subtracted from the upper bound of this finite set of sequential integers, the result is contained in a half-open range of nonnegative integers with the same upper bound. (Contributed by AV, 18-Mar-2018.) (Revised by AV, 30-Oct-2018.)
(𝐾 ∈ (1...𝑁) → (𝑁𝐾) ∈ (0..^𝑁))
 
Theoremelfzodifsumelfzo 9210 If an integer is in a half-open range of nonnegative integers with a difference as upper bound, the sum of the integer with the subtrahend of the difference is in the a half-open range of nonnegative integers containing the minuend of the difference. (Contributed by AV, 13-Nov-2018.)
((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...𝑃)) → (𝐼 ∈ (0..^(𝑁𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃)))
 
Theoremelfzom1elp1fzo 9211 Membership of an integer incremented by one in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Proof shortened by AV, 5-Jan-2020.)
((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (𝐼 + 1) ∈ (0..^𝑁))
 
Theoremelfzom1elfzo 9212 Membership in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 18-Jun-2018.)
((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝐼 ∈ (0..^𝑁))
 
Theoremfzval3 9213 Expressing a closed integer range as a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.)
(𝑁 ∈ ℤ → (𝑀...𝑁) = (𝑀..^(𝑁 + 1)))
 
Theoremfzosn 9214 Expressing a singleton as a half-open range. (Contributed by Stefan O'Rear, 23-Aug-2015.)
(𝐴 ∈ ℤ → (𝐴..^(𝐴 + 1)) = {𝐴})
 
Theoremelfzomin 9215 Membership of an integer in the smallest open range of integers. (Contributed by Alexander van der Vekens, 22-Sep-2018.)
(𝑍 ∈ ℤ → 𝑍 ∈ (𝑍..^(𝑍 + 1)))
 
Theoremzpnn0elfzo 9216 Membership of an integer increased by a nonnegative integer in a half- open integer range. (Contributed by Alexander van der Vekens, 22-Sep-2018.)
((𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑍 + 𝑁) ∈ (𝑍..^((𝑍 + 𝑁) + 1)))
 
Theoremzpnn0elfzo1 9217 Membership of an integer increased by a nonnegative integer in a half- open integer range. (Contributed by Alexander van der Vekens, 22-Sep-2018.)
((𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑍 + 𝑁) ∈ (𝑍..^(𝑍 + (𝑁 + 1))))
 
Theoremfzosplitsnm1 9218 Removing a singleton from a half-open integer range at the end. (Contributed by Alexander van der Vekens, 23-Mar-2018.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → (𝐴..^𝐵) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)}))
 
Theoremelfzonlteqm1 9219 If an element of a half-open integer range is not less than the upper bound of the range decreased by 1, it must be equal to the upper bound of the range decreased by 1. (Contributed by AV, 3-Nov-2018.)
((𝐴 ∈ (0..^𝐵) ∧ ¬ 𝐴 < (𝐵 − 1)) → 𝐴 = (𝐵 − 1))
 
Theoremfzonn0p1 9220 A nonnegative integer is element of the half-open range of nonnegative integers with the element increased by one as an upper bound. (Contributed by Alexander van der Vekens, 5-Aug-2018.)
(𝑁 ∈ ℕ0𝑁 ∈ (0..^(𝑁 + 1)))
 
Theoremfzossfzop1 9221 A half-open range of nonnegative integers is a subset of a half-open range of nonnegative integers with the upper bound increased by one. (Contributed by Alexander van der Vekens, 5-Aug-2018.)
(𝑁 ∈ ℕ0 → (0..^𝑁) ⊆ (0..^(𝑁 + 1)))
 
Theoremfzonn0p1p1 9222 If a nonnegative integer is element of a half-open range of nonnegative integers, increasing this integer by one results in an element of a half- open range of nonnegative integers with the upper bound increased by one. (Contributed by Alexander van der Vekens, 5-Aug-2018.)
(𝐼 ∈ (0..^𝑁) → (𝐼 + 1) ∈ (0..^(𝑁 + 1)))
 
Theoremelfzom1p1elfzo 9223 Increasing an element of a half-open range of nonnegative integers by 1 results in an element of the half-open range of nonnegative integers with an upper bound increased by 1. (Contributed by Alexander van der Vekens, 1-Aug-2018.)
((𝑁 ∈ ℕ ∧ 𝑋 ∈ (0..^(𝑁 − 1))) → (𝑋 + 1) ∈ (0..^𝑁))
 
Theoremfzo0ssnn0 9224 Half-open integer ranges starting with 0 are subsets of NN0. (Contributed by Thierry Arnoux, 8-Oct-2018.)
(0..^𝑁) ⊆ ℕ0
 
Theoremfzo01 9225 Expressing the singleton of 0 as a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.)
(0..^1) = {0}
 
Theoremfzo12sn 9226 A 1-based half-open integer interval up to, but not including, 2 is a singleton. (Contributed by Alexander van der Vekens, 31-Jan-2018.)
(1..^2) = {1}
 
Theoremfzo0to2pr 9227 A half-open integer range from 0 to 2 is an unordered pair. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
(0..^2) = {0, 1}
 
Theoremfzo0to3tp 9228 A half-open integer range from 0 to 3 is an unordered triple. (Contributed by Alexander van der Vekens, 9-Nov-2017.)
(0..^3) = {0, 1, 2}
 
Theoremfzo0to42pr 9229 A half-open integer range from 0 to 4 is a union of two unordered pairs. (Contributed by Alexander van der Vekens, 17-Nov-2017.)
(0..^4) = ({0, 1} ∪ {2, 3})
 
Theoremfzo0sn0fzo1 9230 A half-open range of nonnegative integers is the union of the singleton set containing 0 and a half-open range of positive integers. (Contributed by Alexander van der Vekens, 18-May-2018.)
(𝑁 ∈ ℕ → (0..^𝑁) = ({0} ∪ (1..^𝑁)))
 
Theoremfzoend 9231 The endpoint of a half-open integer range. (Contributed by Mario Carneiro, 29-Sep-2015.)
(𝐴 ∈ (𝐴..^𝐵) → (𝐵 − 1) ∈ (𝐴..^𝐵))
 
Theoremfzo0end 9232 The endpoint of a zero-based half-open range. (Contributed by Stefan O'Rear, 27-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.)
(𝐵 ∈ ℕ → (𝐵 − 1) ∈ (0..^𝐵))
 
Theoremssfzo12 9233 Subset relationship for half-open integer ranges. (Contributed by Alexander van der Vekens, 16-Mar-2018.)
((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → (𝑀𝐾𝐿𝑁)))
 
Theoremssfzo12bi 9234 Subset relationship for half-open integer ranges. (Contributed by Alexander van der Vekens, 5-Nov-2018.)
(((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) ↔ (𝑀𝐾𝐿𝑁)))
 
Theoremubmelm1fzo 9235 The result of subtracting 1 and an integer of a half-open range of nonnegative integers from the upper bound of this range is contained in this range. (Contributed by AV, 23-Mar-2018.) (Revised by AV, 30-Oct-2018.)
(𝐾 ∈ (0..^𝑁) → ((𝑁𝐾) − 1) ∈ (0..^𝑁))
 
Theoremfzofzp1 9236 If a point is in a half-open range, the next point is in the closed range. (Contributed by Stefan O'Rear, 23-Aug-2015.)
(𝐶 ∈ (𝐴..^𝐵) → (𝐶 + 1) ∈ (𝐴...𝐵))
 
Theoremfzofzp1b 9237 If a point is in a half-open range, the next point is in the closed range. (Contributed by Mario Carneiro, 27-Sep-2015.)
(𝐶 ∈ (ℤ𝐴) → (𝐶 ∈ (𝐴..^𝐵) ↔ (𝐶 + 1) ∈ (𝐴...𝐵)))
 
Theoremelfzom1b 9238 An integer is a member of a 1-based finite set of sequential integers iff its predecessor is a member of the corresponding 0-based set. (Contributed by Mario Carneiro, 27-Sep-2015.)
((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (1..^𝑁) ↔ (𝐾 − 1) ∈ (0..^(𝑁 − 1))))
 
Theoremelfzonelfzo 9239 If an element of a half-open integer range is not contained in the lower subrange, it must be in the upper subrange. (Contributed by Alexander van der Vekens, 30-Mar-2018.)
(𝑁 ∈ ℤ → ((𝐾 ∈ (𝑀..^𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) → 𝐾 ∈ (𝑁..^𝑅)))
 
Theoremelfzomelpfzo 9240 An integer increased by another integer is an element of a half-open integer range if and only if the integer is contained in the half-open integer range with bounds decreased by the other integer. (Contributed by Alexander van der Vekens, 30-Mar-2018.)
(((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐾 ∈ ((𝑀𝐿)..^(𝑁𝐿)) ↔ (𝐾 + 𝐿) ∈ (𝑀..^𝑁)))
 
Theorempeano2fzor 9241 A Peano-postulate-like theorem for downward closure of a half-open integer range. (Contributed by Mario Carneiro, 1-Oct-2015.)
((𝐾 ∈ (ℤ𝑀) ∧ (𝐾 + 1) ∈ (𝑀..^𝑁)) → 𝐾 ∈ (𝑀..^𝑁))
 
Theoremfzosplitsn 9242 Extending a half-open range by a singleton on the end. (Contributed by Stefan O'Rear, 23-Aug-2015.)
(𝐵 ∈ (ℤ𝐴) → (𝐴..^(𝐵 + 1)) = ((𝐴..^𝐵) ∪ {𝐵}))
 
Theoremfzosplitprm1 9243 Extending a half-open integer range by an unordered pair at the end. (Contributed by Alexander van der Vekens, 22-Sep-2018.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴..^(𝐵 + 1)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵}))
 
Theoremfzosplitsni 9244 Membership in a half-open range extended by a singleton. (Contributed by Stefan O'Rear, 23-Aug-2015.)
(𝐵 ∈ (ℤ𝐴) → (𝐶 ∈ (𝐴..^(𝐵 + 1)) ↔ (𝐶 ∈ (𝐴..^𝐵) ∨ 𝐶 = 𝐵)))
 
Theoremfzisfzounsn 9245 A finite interval of integers as union of a half-open integer range and a singleton. (Contributed by Alexander van der Vekens, 15-Jun-2018.)
(𝐵 ∈ (ℤ𝐴) → (𝐴...𝐵) = ((𝐴..^𝐵) ∪ {𝐵}))
 
Theoremfzostep1 9246 Two possibilities for a number one greater than a number in a half-open range. (Contributed by Stefan O'Rear, 23-Aug-2015.)
(𝐴 ∈ (𝐵..^𝐶) → ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶))
 
Theoremfzoshftral 9247* Shift the scanning order inside of a quantification over a half-open integer range, analogous to fzshftral 9125. (Contributed by Alexander van der Vekens, 23-Sep-2018.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀..^𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)..^(𝑁 + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
 
Theoremfzind2 9248* Induction on the integers from 𝑀 to 𝑁 inclusive. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Version of fzind 8462 using integer range definitions. (Contributed by Mario Carneiro, 6-Feb-2016.)
(𝑥 = 𝑀 → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 + 1) → (𝜑𝜃))    &   (𝑥 = 𝐾 → (𝜑𝜏))    &   (𝑁 ∈ (ℤ𝑀) → 𝜓)    &   (𝑦 ∈ (𝑀..^𝑁) → (𝜒𝜃))       (𝐾 ∈ (𝑀...𝑁) → 𝜏)
 
Theoremexfzdc 9249* Decidability of the existence of an integer defined by a decidable proposition. (Contributed by Jim Kingdon, 28-Jan-2022.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   ((𝜑𝑛 ∈ (𝑀...𝑁)) → DECID 𝜓)       (𝜑DECID𝑛 ∈ (𝑀...𝑁)𝜓)
 
Theoremfvinim0ffz 9250 The function values for the borders of a finite interval of integers, which is the domain of the function, are not in the image of the interior of the interval iff the intersection of the images of the interior and the borders is empty. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by AV, 5-Feb-2021.)
((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹𝐾) ∉ (𝐹 “ (1..^𝐾)))))
 
Theoremsubfzo0 9251 The difference between two elements in a half-open range of nonnegative integers is greater than the negation of the upper bound and less than the upper bound of the range. (Contributed by AV, 20-Mar-2021.)
((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁)) → (-𝑁 < (𝐼𝐽) ∧ (𝐼𝐽) < 𝑁))
 
3.5.7  Rational numbers (cont.)
 
Theoremqtri3or 9252 Rational trichotomy. (Contributed by Jim Kingdon, 6-Oct-2021.)
((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
 
Theoremqletric 9253 Rational trichotomy. (Contributed by Jim Kingdon, 6-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴𝐵𝐵𝐴))
 
Theoremqlelttric 9254 Rational trichotomy. (Contributed by Jim Kingdon, 7-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴𝐵𝐵 < 𝐴))
 
Theoremqltnle 9255 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Jim Kingdon, 8-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
 
Theoremqdceq 9256 Equality of rationals is decidable. (Contributed by Jim Kingdon, 11-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → DECID 𝐴 = 𝐵)
 
Theoremqbtwnzlemstep 9257* Lemma for qbtwnz 9260. Induction step. (Contributed by Jim Kingdon, 8-Oct-2021.)
((𝐾 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐾)))
 
Theoremqbtwnzlemshrink 9258* Lemma for qbtwnz 9260. Shrinking the range around the given rational number. (Contributed by Jim Kingdon, 8-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐽 ∈ ℕ ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
 
Theoremqbtwnzlemex 9259* Lemma for qbtwnz 9260. Existence of the integer.

The proof starts by finding two integers which are less than and greater than the given rational number. Then this range can be shrunk by choosing an integer in between the endpoints of the range and then deciding which half of the range to keep based on rational number trichotomy, and iterating until the range consists of two consecutive integers. (Contributed by Jim Kingdon, 8-Oct-2021.)

(𝐴 ∈ ℚ → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
 
Theoremqbtwnz 9260* There is a unique greatest integer less than or equal to a rational number. (Contributed by Jim Kingdon, 8-Oct-2021.)
(𝐴 ∈ ℚ → ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
 
Theoremrebtwn2zlemstep 9261* Lemma for rebtwn2z 9263. Induction step. (Contributed by Jim Kingdon, 13-Oct-2021.)
((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐾)))
 
Theoremrebtwn2zlemshrink 9262* Lemma for rebtwn2z 9263. Shrinking the range around the given real number. (Contributed by Jim Kingdon, 13-Oct-2021.)
((𝐴 ∈ ℝ ∧ 𝐽 ∈ (ℤ‘2) ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
 
Theoremrebtwn2z 9263* A real number can be bounded by integers above and below which are two apart.

The proof starts by finding two integers which are less than and greater than the given real number. Then this range can be shrunk by choosing an integer in between the endpoints of the range and then deciding which half of the range to keep based on weak linearity, and iterating until the range consists of integers which are two apart. (Contributed by Jim Kingdon, 13-Oct-2021.)

(𝐴 ∈ ℝ → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
 
Theoremqbtwnrelemcalc 9264 Lemma for qbtwnre 9265. Calculations involved in showing the constructed rational number is less than 𝐵. (Contributed by Jim Kingdon, 14-Oct-2021.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑀 < (𝐴 · (2 · 𝑁)))    &   (𝜑 → (1 / 𝑁) < (𝐵𝐴))       (𝜑 → ((𝑀 + 2) / (2 · 𝑁)) < 𝐵)
 
Theoremqbtwnre 9265* The rational numbers are dense in : any two real numbers have a rational between them. Exercise 6 of [Apostol] p. 28. (Contributed by NM, 18-Nov-2004.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
 
Theoremqbtwnxr 9266* The rational numbers are dense in *: any two extended real numbers have a rational between them. (Contributed by NM, 6-Feb-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
 
Theoremqavgle 9267 The average of two rational numbers is less than or equal to at least one of them. (Contributed by Jim Kingdon, 3-Nov-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (((𝐴 + 𝐵) / 2) ≤ 𝐴 ∨ ((𝐴 + 𝐵) / 2) ≤ 𝐵))
 
Theoremioo0 9268 An empty open interval of extended reals. (Contributed by NM, 6-Feb-2007.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵𝐴))
 
Theoremioom 9269* An open interval of extended reals is inhabited iff the lower argument is less than the upper argument. (Contributed by Jim Kingdon, 27-Nov-2021.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∃𝑥 𝑥 ∈ (𝐴(,)𝐵) ↔ 𝐴 < 𝐵))
 
Theoremico0 9270 An empty open interval of extended reals. (Contributed by FL, 30-May-2014.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,)𝐵) = ∅ ↔ 𝐵𝐴))
 
Theoremioc0 9271 An empty open interval of extended reals. (Contributed by FL, 30-May-2014.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,]𝐵) = ∅ ↔ 𝐵𝐴))
 
3.6  Elementary integer functions
 
3.6.1  The floor and ceiling functions
 
Syntaxcfl 9272 Extend class notation with floor (greatest integer) function.
class
 
Syntaxcceil 9273 Extend class notation to include the ceiling function.
class
 
Definitiondf-fl 9274* Define the floor (greatest integer less than or equal to) function. See flval 9276 for its value, flqlelt 9278 for its basic property, and flqcl 9277 for its closure. For example, (⌊‘(3 / 2)) = 1 while (⌊‘-(3 / 2)) = -2 (ex-fl 10563).

Although we define this on real numbers so that notations are similar to the Metamath Proof Explorer, in the absence of excluded middle few theorems will be possible beyond the rationals. Imagine a real number which is around 2.99995 or 3.00001 . In order to determine whether its floor is 2 or 3, it would be necessary to compute the number to arbitrary precision.

The term "floor" was coined by Ken Iverson. He also invented a mathematical notation for floor, consisting of an L-shaped left bracket and its reflection as a right bracket. In APL, the left-bracket alone is used, and we borrow this idea. (Thanks to Paul Chapman for this information.) (Contributed by NM, 14-Nov-2004.)

⌊ = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑦𝑥𝑥 < (𝑦 + 1))))
 
Definitiondf-ceil 9275 The ceiling (least integer greater than or equal to) function. Defined in ISO 80000-2:2009(E) operation 2-9.18 and the "NIST Digital Library of Mathematical Functions" , front introduction, "Common Notations and Definitions" section at http://dlmf.nist.gov/front/introduction#Sx4. See ceilqval 9308 for its value, ceilqge 9312 and ceilqm1lt 9314 for its basic properties, and ceilqcl 9310 for its closure. For example, (⌈‘(3 / 2)) = 2 while (⌈‘-(3 / 2)) = -1 (ex-ceil 10564).

As described in df-fl 9274 most theorems are only for rationals, not reals.

The symbol is inspired by the gamma shaped left bracket of the usual notation. (Contributed by David A. Wheeler, 19-May-2015.)

⌈ = (𝑥 ∈ ℝ ↦ -(⌊‘-𝑥))
 
Theoremflval 9276* Value of the floor (greatest integer) function. The floor of 𝐴 is the (unique) integer less than or equal to 𝐴 whose successor is strictly greater than 𝐴. (Contributed by NM, 14-Nov-2004.) (Revised by Mario Carneiro, 2-Nov-2013.)
(𝐴 ∈ ℝ → (⌊‘𝐴) = (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
 
Theoremflqcl 9277 The floor (greatest integer) function yields an integer when applied to a rational (closure law). It would presumably be possible to prove a similar result for some real numbers (for example, those apart from any integer), but not real numbers in general. (Contributed by Jim Kingdon, 8-Oct-2021.)
(𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ)
 
Theoremflqlelt 9278 A basic property of the floor (greatest integer) function. (Contributed by Jim Kingdon, 8-Oct-2021.)
(𝐴 ∈ ℚ → ((⌊‘𝐴) ≤ 𝐴𝐴 < ((⌊‘𝐴) + 1)))
 
Theoremflqcld 9279 The floor (greatest integer) function is an integer (closure law). (Contributed by Jim Kingdon, 8-Oct-2021.)
(𝜑𝐴 ∈ ℚ)       (𝜑 → (⌊‘𝐴) ∈ ℤ)
 
Theoremflqle 9280 A basic property of the floor (greatest integer) function. (Contributed by Jim Kingdon, 8-Oct-2021.)
(𝐴 ∈ ℚ → (⌊‘𝐴) ≤ 𝐴)
 
Theoremflqltp1 9281 A basic property of the floor (greatest integer) function. (Contributed by Jim Kingdon, 8-Oct-2021.)
(𝐴 ∈ ℚ → 𝐴 < ((⌊‘𝐴) + 1))
 
Theoremqfraclt1 9282 The fractional part of a rational number is less than one. (Contributed by Jim Kingdon, 8-Oct-2021.)
(𝐴 ∈ ℚ → (𝐴 − (⌊‘𝐴)) < 1)
 
Theoremqfracge0 9283 The fractional part of a rational number is nonnegative. (Contributed by Jim Kingdon, 8-Oct-2021.)
(𝐴 ∈ ℚ → 0 ≤ (𝐴 − (⌊‘𝐴)))
 
Theoremflqge 9284 The floor function value is the greatest integer less than or equal to its argument. (Contributed by Jim Kingdon, 8-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → (𝐵𝐴𝐵 ≤ (⌊‘𝐴)))
 
Theoremflqlt 9285 The floor function value is less than the next integer. (Contributed by Jim Kingdon, 8-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ (⌊‘𝐴) < 𝐵))
 
Theoremflid 9286 An integer is its own floor. (Contributed by NM, 15-Nov-2004.)
(𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴)
 
Theoremflqidm 9287 The floor function is idempotent. (Contributed by Jim Kingdon, 8-Oct-2021.)
(𝐴 ∈ ℚ → (⌊‘(⌊‘𝐴)) = (⌊‘𝐴))
 
Theoremflqidz 9288 A rational number equals its floor iff it is an integer. (Contributed by Jim Kingdon, 9-Oct-2021.)
(𝐴 ∈ ℚ → ((⌊‘𝐴) = 𝐴𝐴 ∈ ℤ))
 
Theoremflqltnz 9289 If A is not an integer, then the floor of A is less than A. (Contributed by Jim Kingdon, 9-Oct-2021.)
((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) < 𝐴)
 
Theoremflqwordi 9290 Ordering relationship for the greatest integer function. (Contributed by Jim Kingdon, 9-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐴𝐵) → (⌊‘𝐴) ≤ (⌊‘𝐵))
 
Theoremflqword2 9291 Ordering relationship for the greatest integer function. (Contributed by Jim Kingdon, 9-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐴𝐵) → (⌊‘𝐵) ∈ (ℤ‘(⌊‘𝐴)))
 
Theoremflqbi 9292 A condition equivalent to floor. (Contributed by Jim Kingdon, 9-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → ((⌊‘𝐴) = 𝐵 ↔ (𝐵𝐴𝐴 < (𝐵 + 1))))
 
Theoremflqbi2 9293 A condition equivalent to floor. (Contributed by Jim Kingdon, 9-Oct-2021.)
((𝑁 ∈ ℤ ∧ 𝐹 ∈ ℚ) → ((⌊‘(𝑁 + 𝐹)) = 𝑁 ↔ (0 ≤ 𝐹𝐹 < 1)))
 
Theoremadddivflid 9294 The floor of a sum of an integer and a fraction is equal to the integer iff the denominator of the fraction is less than the numerator. (Contributed by AV, 14-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ) → (𝐵 < 𝐶 ↔ (⌊‘(𝐴 + (𝐵 / 𝐶))) = 𝐴))
 
Theoremflqge0nn0 9295 The floor of a number greater than or equal to 0 is a nonnegative integer. (Contributed by Jim Kingdon, 10-Oct-2021.)
((𝐴 ∈ ℚ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0)
 
Theoremflqge1nn 9296 The floor of a number greater than or equal to 1 is a positive integer. (Contributed by Jim Kingdon, 10-Oct-2021.)
((𝐴 ∈ ℚ ∧ 1 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ)
 
Theoremfldivnn0 9297 The floor function of a division of a nonnegative integer by a positive integer is a nonnegative integer. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
((𝐾 ∈ ℕ0𝐿 ∈ ℕ) → (⌊‘(𝐾 / 𝐿)) ∈ ℕ0)
 
Theoremdivfl0 9298 The floor of a fraction is 0 iff the denominator is less than the numerator. (Contributed by AV, 8-Jul-2021.)
((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ (⌊‘(𝐴 / 𝐵)) = 0))
 
Theoremflqaddz 9299 An integer can be moved in and out of the floor of a sum. (Contributed by Jim Kingdon, 10-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁))
 
Theoremflqzadd 9300 An integer can be moved in and out of the floor of a sum. (Contributed by Jim Kingdon, 10-Oct-2021.)
((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℚ) → (⌊‘(𝑁 + 𝐴)) = (𝑁 + (⌊‘𝐴)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10795
  Copyright terms: Public domain < Previous  Next >