ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluzsubi GIF version

Theorem eluzsubi 8646
Description: Membership in an earlier upper set of integers. (Contributed by Paul Chapman, 22-Nov-2007.)
Hypotheses
Ref Expression
eluzaddi.1 𝑀 ∈ ℤ
eluzaddi.2 𝐾 ∈ ℤ
Assertion
Ref Expression
eluzsubi (𝑁 ∈ (ℤ‘(𝑀 + 𝐾)) → (𝑁𝐾) ∈ (ℤ𝑀))

Proof of Theorem eluzsubi
StepHypRef Expression
1 eluzelz 8628 . . 3 (𝑁 ∈ (ℤ‘(𝑀 + 𝐾)) → 𝑁 ∈ ℤ)
2 eluzaddi.2 . . 3 𝐾 ∈ ℤ
3 zsubcl 8392 . . 3 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁𝐾) ∈ ℤ)
41, 2, 3sylancl 404 . 2 (𝑁 ∈ (ℤ‘(𝑀 + 𝐾)) → (𝑁𝐾) ∈ ℤ)
5 eluzaddi.1 . . . . 5 𝑀 ∈ ℤ
6 zaddcl 8391 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 + 𝐾) ∈ ℤ)
75, 2, 6mp2an 416 . . . 4 (𝑀 + 𝐾) ∈ ℤ
87eluz1i 8626 . . 3 (𝑁 ∈ (ℤ‘(𝑀 + 𝐾)) ↔ (𝑁 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑁))
9 zre 8355 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
105zrei 8357 . . . . . 6 𝑀 ∈ ℝ
112zrei 8357 . . . . . 6 𝐾 ∈ ℝ
12 leaddsub 7542 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 𝐾) ≤ 𝑁𝑀 ≤ (𝑁𝐾)))
1310, 11, 12mp3an12 1258 . . . . 5 (𝑁 ∈ ℝ → ((𝑀 + 𝐾) ≤ 𝑁𝑀 ≤ (𝑁𝐾)))
149, 13syl 14 . . . 4 (𝑁 ∈ ℤ → ((𝑀 + 𝐾) ≤ 𝑁𝑀 ≤ (𝑁𝐾)))
1514biimpa 290 . . 3 ((𝑁 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑁) → 𝑀 ≤ (𝑁𝐾))
168, 15sylbi 119 . 2 (𝑁 ∈ (ℤ‘(𝑀 + 𝐾)) → 𝑀 ≤ (𝑁𝐾))
175eluz1i 8626 . 2 ((𝑁𝐾) ∈ (ℤ𝑀) ↔ ((𝑁𝐾) ∈ ℤ ∧ 𝑀 ≤ (𝑁𝐾)))
184, 16, 17sylanbrc 408 1 (𝑁 ∈ (ℤ‘(𝑀 + 𝐾)) → (𝑁𝐾) ∈ (ℤ𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wcel 1433   class class class wbr 3785  cfv 4922  (class class class)co 5532  cr 6980   + caddc 6984  cle 7154  cmin 7279  cz 8351  cuz 8619
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator